Y - 4 = \frac{1}{16}(x - 7)^2
[SOLUTION] \text{Vertex: }(7,4),\text{ Focus: }(7,8),\text{ Directrix: }y=0
[STEP-BY-STEP]
Y - 4 = \frac{1}{16}(x - 7)^2
Compare with the standard form of a parabola opening upwards:
y = a(x - h)^2 + k
where:
(h, k) \text{ is the vertex, and } a \text{ determines the focal length.}
From the given equation, we identify:
h = 7, k = 4, a = \frac{1}{16}
The vertex is:
(h, k) = (7, 4)
The focal length \( \frac{1}{4a} \):
\frac{1}{4a} = \frac{1}{4 \cdot \frac{1}{16}} = 4
Focus:
(h,k+\frac{1}{4a})=(7,4+4)=(7,8)
Directrix:
y=k-\frac{1}{4a}=4-4=0
Answer:
\text{Vertex: } (7, 4), \text{ Focus: } (7, 8), \text{ Directrix: } y = 0