^x+1 +1 describe transformation","","Solution:\u003Cbr />\n1. Given function:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = -24^{x+1} + 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Base function:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = 4^x\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Identify transformations step-by-step:\u003Cbr />\n - **Translation horizontally**: The function has \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x+1\u003C/math-field>\u003C/math-field> as the exponent instead of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>. This indicates a horizontal shift to the left by 1 unit.\u003Cbr />\n - **Vertical stretch and reflection**: The coefficient before \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4\u003C/math-field>\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - **Vertical stretch**: The factor \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2\u003C/math-field>\u003C/math-field> indicates that the function is stretched vertically by a factor of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - **Reflection**: The negative sign indicates a reflection across the x-axis.\u003Cbr />\n - **Vertical translation**: The \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>+1\u003C/math-field>\u003C/math-field> outside the function indicates a vertical shift upwards by 1 unit.\u003Cbr />\n\u003Cbr />\n4. Describe the complete transformation:\u003Cbr />\n - The function \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = 4^x\u003C/math-field>\u003C/math-field> undergoes the following transformations: a horizontal shift to the left by 1 unit, a vertical stretch by a factor of 2, reflection across the x-axis, and finally a vertical shift upwards by 1 unit.",null,1255,251,"y-2-4-x-1-1-describe-transformation",{"id":16,"category":7,"text_question":17,"photo_question":9,"text_answer":18,"step_text_answer":11,"step_photo_answer":11,"views":19,"likes":20,"slug":21},538086,"Add the polynomials gx=x3-2x2+3x-1+4x2-x+2","Solution: \u003Cbr />\n1. Write down the given polynomials:\u003Cbr />\n- First polynomial: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>gx = x^3 - 2x^2 + 3x - 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Second polynomial: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x^2 - x + 2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Align and add the polynomials term by term:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>gx = x^3 - 2x^2 + 3x - 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x^2 - x + 2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Add the corresponding like terms:\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^2\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2x^2 + 4x^2 = 2x^2\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x - x = 2x\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For constant terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-1 + 2 = 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. The resulting polynomial after addition is:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3 + 2x^2 + 2x + 1\u003C/math-field>\u003C/math-field>",739,148,"add-the-polynomials-g-x-x3-2x2-3x-1-4x2-x-2",{"id":23,"category":7,"text_question":24,"photo_question":9,"text_answer":25,"step_text_answer":11,"step_photo_answer":11,"views":26,"likes":27,"slug":28},538085,"R=3m. Calculate the volume of the sphere. Round to the nearest tenth if necessary","1. The formula for the volume of a sphere is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi R^3 \u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. Substitute the given radius \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> R = 3 \\, \\text{m} \u003C/math-field>\u003C/math-field> into the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi 3^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 3^3 = 27 \u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Thus, the volume becomes:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi \\times 27 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify the expression:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4 \\times 27}{3} \\pi = 36 \\pi \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Use the approximation \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\pi \\approx 3.1416 \u003C/math-field>\u003C/math-field> :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 36 \\times 3.1416 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. Calculate the approximate volume:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V\\approx113.0973\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>8. Round to the nearest tenth:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 113.1 \\, \\text{m}^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Therefore, the volume of the sphere is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 113.1 \\, \\text{m}^3 \u003C/math-field>\u003C/math-field> .",1203,241,"r-3m-calculate-the-volume-of-the-sphere-round-to-the-nearest-tenth-if-necessary",{"id":30,"category":7,"text_question":31,"photo_question":9,"text_answer":32,"step_text_answer":11,"step_photo_answer":11,"views":33,"likes":34,"slug":35},538084,"Width of 12 in. Calculate the volume of the sphere. Round to the nearest tenth if necessary","1. Identify the radius of the sphere. Given the width is 12 inches, the diameter is 12 inches. Therefore, the radius is half of the diameter:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> r = \\frac{12}{2} = 6 \\, \\text{in} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Use the formula for the volume of a sphere:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi r^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute the radius into the formula:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi 6^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Calculate:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi \\times 216 = \\frac{864}{3} \\pi = 288 \\pi \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Approximate using \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\pi \\approx 3.1416 \u003C/math-field>\u003C/math-field>:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 288 \\times 3.1416 = 904.8 \\, \\text{in}^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. The volume of the sphere, rounded to the nearest tenth, is approximately:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 904.8 \\, \\text{in}^3 \u003C/math-field>\u003C/math-field>",278,56,"width-of-12-in-calculate-the-volume-of-the-sphere-round-to-the-nearest-tenth-if-necessary",{"id":37,"category":7,"text_question":38,"photo_question":9,"text_answer":39,"step_text_answer":11,"step_photo_answer":11,"views":40,"likes":41,"slug":42},538083,"Calculate the volume tothenearesttenthofacubiccentimeter of a golf ball whose diameter is 4.267cm","1. The formula for the volume of a sphere is given by \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi r^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. The diameter of the golf ball is given as 4.267 cm, so the radius is half of that: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>r = \\frac{4.267}{2} = 2.1335 \\, \\text{cm}\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>3. Substitute the radius into the volume formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi 2.1335^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Calculate the cube of the radius: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2.1335^3 = 9.707432537375\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>5. Substitute this back into the formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V=\\frac{4}{3}\\pi\\times9.707432537375\\approx40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>6. The volume of the golf ball is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .",1440,288,"calculate-the-volume-to-the-nearest-tenth-of-a-cubic-centimeter-of-a-golf-ball-whose-diameter-is-4-267cm",{"id":44,"category":7,"text_question":45,"photo_question":9,"text_answer":46,"step_text_answer":11,"step_photo_answer":11,"views":47,"likes":48,"slug":49},538082,"Find the length of each base edge tothenearesttenthofameter of the 24m tall glass square pyramids of the Muttart Conservatory in Alberta, Canada, if each contains 5280m^3 of space","1. Volume V of a square pyramid is given by the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{1}{3} B h\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>where B is the area of the base and h is the height of the pyramid.\u003Cbr>\u003Cbr>2. Given that the height h = 24 m and the volume V = 5280 m^3.\u003Cbr>\u003Cbr>3. The base is square, so if the side length of the base is s, then:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>B = s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Substituting into the volume formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = \\frac{1}{3} s^2 \\times 24\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify and solve for s^2:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = 8 s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s^2 = \\frac{5280}{8} = 660\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Solve for s:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{660} \\approx 25.7\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. To find the length of each base edge to the nearest tenth of a meter, compute:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s \\approx 25.7 \\, \\text{m}\u003C/math-field>\u003C/math-field>",418,84,"find-the-length-of-each-base-edge-to-the-nearest-tenth-of-a-meter-of-the-24m-tall-glass-square-pyramids-of-the-muttart-conservatory-in-alberta-canada-if-each-contains-5280m-3-of-space",{"id":51,"category":7,"text_question":52,"photo_question":9,"text_answer":53,"step_text_answer":11,"step_photo_answer":11,"views":54,"likes":55,"slug":56},538081,"An observer is 150 meters away\n distance of a hot air balloon online\n straight line at ground level. From your position,\n measures an elevation angle of 40° up to\n the base of the balloon. At what height is\n find the hot air balloon?","Solution:\u003Cbr />\n1. Dado:\u003Cbr />\n- Distancia horizontal desde el observador hasta la base del globo: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>d = 150 \\ m\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Ángulo de elevación: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\theta = 40^{\\circ}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Usamos la función tangente para encontrar la altura \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h\u003C/math-field>\u003C/math-field> del globo aerostático. La tangente de un ángulo en un triángulo rectángulo es la razón entre la altura y la distancia horizontal:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tantheta = \\frac{h}{d}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Sustituimos los valores conocidos en la ecuación:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan40circ = \\frac{h}{150}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Resolvemos para \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h = 150 \\times \\tan40circ\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Calculamos el valor numérico:\u003Cbr />\n* Usando una calculadora, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan40circ \\approx 0.8391\u003C/math-field>\u003C/math-field>\u003Cbr />\n* Entonces: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h \\approx 150 \\times 0.8391 = 125.865 \\ m\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nLa altura del globo aerostático es aproximadamente \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>125.865 \\ m\u003C/math-field>\u003C/math-field>.",667,133,"an-observer-is-150-meters-away-distance-of-a-hot-air-balloon-online-straight-line-at-ground-level-from-your-position-measures-an-elevation-angle-of-40-up-to-the-base-of-the-balloon-at-what-hei",{"id":58,"category":7,"text_question":59,"photo_question":9,"text_answer":60,"step_text_answer":11,"step_photo_answer":11,"views":61,"likes":62,"slug":63},538080,"A plane ticket has gone up 18%, now costing 4,720.Howmuchdiditcostbeforetheincrease?","\u003Cmath−fieldread−onlydefault−mode=\"inline−math\"class=\"math−expression\">\u003Cmath−fieldread−only>textSolution:\u003C/math−field>\u003C/math−field>\u003Cbr/>\n1.Definevariables:\u003Cbr/>\n−Let\u003Cmath−fieldread−onlydefault−mode=\"inline−math\"class=\"math−expression\">\u003Cmath−fieldread−only>P\u003C/math−field>\u003C/math−field>betheoriginalpriceoftheplaneticket.\u003Cbr/>\n−\u003Cmath−fieldread−onlydefault−mode=\"inline−math\"class=\"math−expression\">\u003Cmath−fieldread−only>P\u003C/math−field>\u003C/math−field>increasedby18\\frac{x}{15}=\\frac{4}{3}\u003C/math−field>\n\u003Cbr>\n\u003C/div>\n\n\u003Cdiv>\n\n\u003Cmath−fieldstyle=\"font−size:16px;padding:8px;border−radius:8px;border:1pxsolidrgba(0,0,0,.3);box−shadow:000rgba(0,0,0,.2)\n\"read−only>x=20\u003C/math-field>\n \u003Cbr>\n \u003C/div>",467,93,"15-75-of",{"id":121,"category":7,"text_question":122,"photo_question":9,"text_answer":123,"step_text_answer":11,"step_photo_answer":11,"views":124,"likes":62,"slug":125},538067,"Naria Wants to build a perimeter wall fence around 400 sqm lot. The frontage of the lot is 20 meters. The wall height is 1.2 meters below the ground and 3.8 meters above the ground .\nThe cost of constructing the wall is 750 per square meter. Additionally,she plans to install a 5-meter-wide gate that costs ₱50,000.\nHow much Maria spend in total for the wall and the gate\na. Php 281,250.00\nb. Php 106,250.00\nc. Php 331,250.00\nd. Php 218,250.00","1. Determine the dimensions of the lot. Given the frontage is 20 meters, calculate the other side using the area:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Area} = 20 \\times x = 400 \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{400}{20} = 20 \\, \\text{meters} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Calculate the perimeter of the lot:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Perimeter} = 2 \\times (20 + 20) = 80 \\, \\text{meters} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Calculate the total height of the wall:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Total height} = 1.2 + 3.8 = 5 \\, \\text{meters} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Calculate the wall area excluding the gate:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Wall area} = (\\text{Perimeter} - \\text{Gate width}) \\times \\text{Total height} \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Wall area} = (80 - 5) \\times 5 = 75 \\times 5 = 375 \\, \\text{sqm} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Calculate the cost of the wall:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Wall cost} = 375 \\times 750 = 281,250 \\, \\text{PHP} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Calculate total cost including the gate:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Total cost} = \\text{Wall cost} + \\text{Gate cost} \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Total cost} = 281,250 + 50,000 = 331,250 \\, \\text{PHP} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Therefore, the total cost is: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Php} \\, 331,250.00 \u003C/math-field>\u003C/math-field>",727,"naria-wants-to-build-a-perimeter-wall-fence-around-400-sqm-lot-the-frontage-of-the-lot-is-20-meters-the-wall-height-is-1-2-meters-below-the-ground-and-3-8-meters-above-the-ground-the-cost-of-const",{"id":127,"category":7,"text_question":128,"photo_question":9,"text_answer":129,"step_text_answer":11,"step_photo_answer":11,"views":130,"likes":48,"slug":131},538066,"2. A rectangular lot has a\n30 meters.\nallocated along the frontage. What is the gross area\nfrontage of 18 meters and a depth of\nHowever, a public right of way of 3 meters is\nReve\nof\nthe\nlot?\na. 520 sqm\nb. 540 sqm\nC. 560 sqm\nd. 580 sqm\nReV","1. Calculate the area of the rectangular lot without the right of way:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Area}_{\\text{total}} = \\text{frontage} \\times \\text{depth} = 18 \\, \\text{m} \\times 30 \\, \\text{m} = 540 \\, \\text{sqm} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. No need to subtract any area because the problem states that the right of way has already been accounted for in the dimensions provided.\u003Cbr />\n\u003Cbr />\n3. Therefore, the gross area of the lot remains:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 540 \\, \\text{sqm} \u003C/math-field>\u003C/math-field> \u003Cbr />\n \u003Cbr />\nThus, the answer is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>540 \\, \\text{sqm}\u003C/math-field>\u003C/math-field>.",420,"2-a-rectangular-lot-has-a-30-meters-allocated-along-the-frontage-what-is-the-gross-area-frontage-of-18-meters-and-a-depth-of-however-a-public-right-of-way-of-3-meters-is-reve-of-the-lot-a-520-sq",{"id":133,"category":7,"text_question":134,"photo_question":9,"text_answer":135,"step_text_answer":11,"step_photo_answer":11,"views":136,"likes":137,"slug":138},538065,"A triangular lot has a base of 15 meters and heights of 10 meters . What is the total area of the lot ?","1. The formula for the area of a triangle is given by:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = \\frac{1}{2} \\times \\text{base} \\times \\text{height} \u003C/math-field>\u003C/math-field> \u003Cbr />\n\u003Cbr />\n2. Substitute the given values into the formula:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = \\frac{1}{2} \\times 15 \\times 10 \u003C/math-field>\u003C/math-field> \u003Cbr />\n\u003Cbr />\n3. Calculate the area:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = \\frac{1}{2} \\times 150 \u003C/math-field>\u003C/math-field> \u003Cbr />\n\u003Cbr />\n4. Simplify the expression:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = 75 \u003C/math-field>\u003C/math-field> \u003Cbr />\n\u003Cbr />\nTherefore, the total area of the lot is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>75 \\, \\text{square meters}\u003C/math-field>\u003C/math-field>.",425,85,"a-triangular-lot-has-a-base-of-15-meters-and-heights-of-10-meters-what-is-the-total-area-of-the-lot",{"id":140,"category":7,"text_question":141,"photo_question":9,"text_answer":142,"step_text_answer":11,"step_photo_answer":11,"views":143,"likes":144,"slug":145},538064,"4x+(x-3)=2x-(3x-4)+5","Solution:\u003Cbr />\n1. Simplify both sides of the equation.\u003Cbr />\n- Left side: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x + (x - 3) = 4x + x - 3 = 5x - 3\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Right side: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x - (3x - 4) + 5 = 2x - 3x + 4 + 5 = -x + 9\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. The equation is now: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5x - 3 = -x + 9\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Add \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> to both sides to eliminate the \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-x\u003C/math-field>\u003C/math-field> from the right side and simplify:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5x + x - 3 = 9\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify: \u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>6x - 3 = 9\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Add 3 to both sides to isolate terms with \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>6x = 9 + 3\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Simplify:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>6x = 12\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Divide both sides by 6 to solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = \\frac{12}{6}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n8. Simplify the fraction:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 2\u003C/math-field>\u003C/math-field>",1332,266,"4x-x-3-2x-3x-4-5",{"first":147,"last":148,"prev":11,"next":149},1,187,2,{"current_page":147,"from":147,"last_page":148,"links":151,"path":189,"per_page":190,"to":190,"total":191},[152,155,158,161,164,167,170,173,176,179,182,185,187],{"url":147,"label":153,"active":154},"1",true,{"url":149,"label":156,"active":157},"2",false,{"url":159,"label":160,"active":157},3,"3",{"url":162,"label":163,"active":157},4,"4",{"url":165,"label":166,"active":157},5,"5",{"url":168,"label":169,"active":157},6,"6",{"url":171,"label":172,"active":157},7,"7",{"url":174,"label":175,"active":157},8,"8",{"url":177,"label":178,"active":157},9,"9",{"url":180,"label":181,"active":157},10,"10",{"url":183,"label":184,"active":157},186,"186",{"url":148,"label":186,"active":157},"187",{"url":149,"label":188,"active":157},"Next »","https://api.math-master.org/api/question",20,3737,{"data":193},[194,196,198,200,202,204],{"id":147,"title":195,"slug":11},"Algebra",{"id":149,"title":197,"slug":11},"Geometry",{"id":159,"title":199,"slug":11},"Coordinate-geometry",{"id":162,"title":201,"slug":11},"Statistics",{"id":165,"title":203,"slug":11},"Calculus",{"id":168,"title":205,"slug":11},"General",{"data":207},[208,209,210,211,212,213],{"id":147,"title":195,"slug":11},{"id":149,"title":197,"slug":11},{"id":159,"title":199,"slug":11},{"id":162,"title":201,"slug":11},{"id":165,"title":203,"slug":11},{"id":168,"title":205,"slug":11},{"data":215},{"id":216,"category":7,"slug":217,"text_question":218,"photo_question":11,"text_answer":219,"step_text_answer":11,"step_photo_answer":11,"views":220,"likes":221,"expert":222},536602,"find-the-vertex-focus-and-directrix-of-y-4-1-16-x-7-2","Find the vertex focus and directrix of\n\nY-4=1/16(x-7)^2","\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>Y - 4 = \\frac{1}{16}(x - 7)^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>[SOLUTION] \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\text{Vertex: }(7,4),\\text{ Focus: }(7,8),\\text{ Directrix: }y=0\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>[STEP-BY-STEP]\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>Y - 4 = \\frac{1}{16}(x - 7)^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Compare with the standard form of a parabola opening upwards:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = a(x - h)^2 + k\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>where:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(h, k) \\text{ is the vertex, and } a \\text{ determines the focal length.}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>From the given equation, we identify:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h = 7, k = 4, a = \\frac{1}{16}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>The vertex is:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(h, k) = (7, 4)\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>The focal length \\( \\frac{1}{4a} \\):\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\frac{1}{4a} = \\frac{1}{4 \\cdot \\frac{1}{16}} = 4\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Focus:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(h,k+\\frac{1}{4a})=(7,4+4)=(7,8)\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Directrix:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y=k-\\frac{1}{4a}=4-4=0\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Answer:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\text{Vertex: } (7, 4), \\text{ Focus: } (7, 8), \\text{ Directrix: } y = 0\u003C/math-field>\u003C/math-field>",348,70,{"id":223,"name":224,"photo":225,"biography":226,"created_at":11,"updated_at":11,"rating":227,"total_answer":228},28,"Esmeralda","https://api.math-master.org/img/experts/28/28.webp","From an early age, I've been captivated by the enchanting world of mathematics. It all began during my childhood when the mere sight of numbers and equations ignited a spark within me. This fascination evolved into a lifelong passion, shaping my journey into becoming a dedicated math enthusiast.\r\n\r\nThroughout my formative years in both primary and secondary school, I eagerly participated in various math contests, emerging victorious and accumulating a treasure trove of accolades that celebrated my mathematical prowess. As I embarked on my college journey, I chose a bachelor's degree program that seamlessly intertwined mathematics with computational problem-solving.\r\n\r\nStepping into the realm of teaching was a natural progression for me. Armed with a deep reservoir of mathematical knowledge and an innate ability to explain complex concepts in simple terms, I found myself guiding college entrance exam reviewees through the intricacies of algebra, geometry, trigonometry, and pre-calculus. In the interstices of my journey, I also dabbled in the realm of freelance mathematics. With the luxury of time, I engaged in tackling a diverse array of mathematical problems and coursework. This not only honed my skills further but also cemented my belief that mathematics, while a field of study, is also a boundless realm of exploration and creativity.",4.7,98,{"data":230},{"questions":231},[232,236,240,244,248,252,256,260,264,268,272,276,280,284,288,292,296,300,304,308],{"id":233,"category":7,"text_question":234,"slug":235},531999,"How to find the value of x and y which satisfy both equations x-2y=24 and 8x-y=117","how-to-find-the-value-of-x-and-y-which-satisfy-both-equations-x-2y-24-and-8x-y-117",{"id":237,"category":7,"text_question":238,"slug":239},532048,"CASE 6-1: PREPARE A PRODUCTION PLAN: WHAT PROBLEMS ARRIVE? Midwest Plastics Company has conducted profit planning for several years. The president stated (with justification) that inventory control and planning had not been satisfactory, which was mainly due to poor planning of production and inventory budgets. Please analyze and provide recommendations, in detail, on the issue regarding the 20B profit plan, which is now being prepared. Their analysis and recommendations will be presented to the executive committee. Despite the seasonality factor, the sales department has been successful in developing a sales plan, on a monthly basis, for each year. The following sales data is available for 20B. 1. Sales plan summary for 20B: 2. Finished goods inventory, as of January 1, 20B, is 96,000 units. 3. Work-in-process inventory will remain constant. 4. Actual annual sales in 20A, including the estimate for December, were 350,000 units. 5. The average finished goods inventory during 20A was 70,000 units. IT IS REQUESTED. 1. Prepare the annual production budget, assuming that management policy is to budget ending finished goods inventory at a standard quantity, based on the ratio of historical sales of 20A to inventory turnover. 2. Prepare a schedule showing sales, production, and inventory levels for each month, assuming: 1) stable inventory, 2) stable production, and 3) recommended inventory-production levels. In developing your recommendations, assume that the following policies have been established: a) The president has set the policy that a maximum inventory of 85,000 units and a minimum inventory of 75,000 units should be used, except in abnormal circumstances. b) A stable level of production is definitely preferred, except that during the holiday season in July and August, production may be reduced by 25 percent. Likewise, a variation in production of 7.5 percent above and below the average level is acceptable. 3. What are the main problems faced by the company in production planning? Make your general recommendations.","case-6-1-prepare-a-production-plan-what-problems-arrive-midwest-plastics-company-has-conducted-profit-planning-for-several-years-the-president-stated-with-justification-that-inventory-control-an",{"id":241,"category":7,"text_question":242,"slug":243},532313,"STUDENTS IN A CLASS LEARN ONLY ONE FOREIGN LANGUAGE. two-sevenths of the students learn German, half of the students learn Spanish, and the remaining six students learn Italian. what is the number of students in this class? detail your reasoning carefully.","students-in-a-class-learn-only-one-foreign-language-two-sevenths-of-the-students-learn-german-half-of-the-students-learn-spanish-and-the-remaining-six-students-learn-italian-what-is-the-number-of",{"id":245,"category":7,"text_question":246,"slug":247},533940,"4.2x10^_6 convert to standard notation","4-2x10-6-convert-to-standard-notation",{"id":249,"category":7,"text_question":250,"slug":251},533971,"The sum of two numbers is 6, and the sum of their squares is 28. Find these numbers exactly","the-sum-of-two-numbers-is-6-and-the-sum-of-their-squares-is-28-find-these-numbers-exactly",{"id":253,"category":7,"text_question":254,"slug":255},533980,"Find the root of x^4-10x^ 5=0 using Newton's method, with a precision of the smallest positive root.","find-the-root-of-x-4-10x-5-0-using-newton-s-method-with-a-precision-of-the-smallest-positive-root",{"id":257,"category":7,"text_question":258,"slug":259},533986,"(3x^(2) 9x 6)/(5x^(2)-20)","3x-2-9x-6-5x-2-20",{"id":261,"category":7,"text_question":262,"slug":263},534001,"Suppose the horses in a large they will have a mean way of 818 pounds in a variance of 3481. What is the probability that the mean weight of the sample of horses with differ from the population mean by more than 18 pounds is 34 horses are sampled at random from the stable.","suppose-the-horses-in-a-large-they-will-have-a-mean-way-of-818-pounds-in-a-variance-of-3481-what-is-the-probability-that-the-mean-weight-of-the-sample-of-horses-with-differ-from-the-population-mean-b",{"id":265,"category":7,"text_question":266,"slug":267},534018,"To make brine, José buys 1 kg of salt and pays 12 pesos. If he buys 4 kg, they charge him 48 pesos, but for 100 pesos they sell him 9 kg. What is the constant of proportionality?","to-make-brine-jose-buys-1-kg-of-salt-and-pays-12-pesos-if-he-buys-4-kg-they-charge-him-48-pesos-but-for-100-pesos-they-sell-him-9-kg-what-is-the-constant-of-proportionality",{"id":269,"category":7,"text_question":270,"slug":271},534071,"There are 162 students enrolled in the basic mathematics course. If the number of women is 8 times the number of men, how many women are there in the basic mathematics course?","there-are-162-students-enrolled-in-the-basic-mathematics-course-if-the-number-of-women-is-8-times-the-number-of-men-how-many-women-are-there-in-the-basic-mathematics-course",{"id":273,"category":7,"text_question":274,"slug":275},534129,"Determine the general equation of the straight line that passes through the point P (2;-3) and is parallel to the straight line with the equation 5x – 2y 1 = 0:","determine-the-general-equation-of-the-straight-line-that-passes-through-the-point-p-2-3-and-is-parallel-to-the-straight-line-with-the-equation-5x-2y-1-0",{"id":277,"category":7,"text_question":278,"slug":279},534378,"Your grandfather has run a small high street pharmacy for 40 years. After much persuasion, he has agreed to open a digital store online. List 5 potential ways to improve sales and/or margins by having a digital pharmacy through the utilisation of historic or new sales data.","your-grandfather-has-run-a-small-high-street-pharmacy-for-40-years-after-much-persuasion-he-has-agreed-to-open-a-digital-store-online-list-5-potential-ways-to-improve-sales-and-or-margins-by-having",{"id":281,"category":7,"text_question":282,"slug":283},534383,"Find the number of pounds of nails required for 17850 square feet of drywall if each thousand square feet requires 4.5 pounds of nails.","find-the-number-of-pounds-of-nails-required-for-17850-square-feet-of-drywall-if-each-thousand-square-feet-requires-4-5-pounds-of-nails",{"id":285,"category":7,"text_question":286,"slug":287},534417,"Let X be a discrete random variable such that E(X)=3 and V(X)=5. Let 𝑌 = 2𝑋^2 − 3𝑋. Determine E(Y).","let-x-be-a-discrete-random-variable-such-that-e-x-3-and-v-x-5-let-y-2x-2-3x-determine-e-y",{"id":289,"category":7,"text_question":290,"slug":291},534419,"Determine the Linear function whose graph passes through the points (6, -2) and has slope 3.","determine-the-linear-function-whose-graph-passes-through-the-points-6-2-and-has-slope-3",{"id":293,"category":7,"text_question":294,"slug":295},534445,"Find the area of a triangle ABC when m\u003CC = 14 degrees, a = 5.7 miles, and b = 9.3 miles.","find-the-area-of-a-triangle-abc-when-m-c-14-degrees-a-5-7-miles-and-b-9-3-miles",{"id":297,"category":7,"text_question":298,"slug":299},534489,"The area bounded by the curve y=ln(x) and the lines x=1 and x=4 above the x−axis is","the-area-bounded-by-the-curve-y-ln-x-and-the-lines-x-1-and-x-4-above-the-x-axis-is",{"id":301,"category":7,"text_question":302,"slug":303},534547,"2.3 X 0.8","2-3-x-0-8",{"id":305,"category":7,"text_question":306,"slug":307},534574,"a coffee shop has 9 types of creamer and 11 types of sweetener. In how any ways can a person make their coffee?","a-coffee-shop-has-9-types-of-creamer-and-11-types-of-sweetener-in-how-any-ways-can-a-person-make-their-coffee",{"id":309,"category":7,"text_question":310,"slug":311},534593,"Determine the general solution of the equation y′+y=e−x\n .","determine-the-general-solution-of-the-equation-y-y-e-x",{"data":313},{"questions":314},[315,319,323,327,331,335,339,343,347,351,355,359,363,367,371,375,379,383,387,391],{"id":316,"category":7,"text_question":317,"slug":318},532060,"5(4x+3)=75","5-4x-3-75",{"id":320,"category":7,"text_question":321,"slug":322},532061,"A car tire can rotate at a frequency of 3000 revolutions per minute. Given that a typical tire radius is 0.5 m, what is the centripetal acceleration of the tire?","a-car-tire-can-rotate-at-a-frequency-of-3000-revolutions-per-minute-given-that-a-typical-tire-radius-is-0-5-m-what-is-the-centripetal-acceleration-of-the-tire",{"id":324,"category":7,"text_question":325,"slug":326},532095,"What is the amount of interest of 75,000 at 3.45% per year, at the end of 12 years and 6 months?","what-is-the-amount-of-interest-of-75-000-at-3-45-per-year-at-the-end-of-12-years-and-6-months",{"id":328,"category":7,"text_question":329,"slug":330},532298,"Consider the relation R defined on the set of positive integers as (x,y) ∈ R if x divides y. Choose all the true statements.\nR is reflexive.\nR is symmetric.\nR is antisymmetric.\nR is transitive.\nR is a partial order.\nR is a total order.\nR is an equivalence relation.","consider-the-relation-r-defined-on-the-set-of-positive-integers-as-x-y-r-if-x-divides-y-choose-all-the-true-statements-r-is-reflexive-r-is-symmetric-r-is-antisymmetric-r-is-transitive-r-is-a",{"id":332,"category":7,"text_question":333,"slug":334},533894,"3(4×-1)-2(×+3)=7(×-1)+2","3-4-1-2-3-7-1-2",{"id":336,"category":7,"text_question":337,"slug":338},533934,"A company is wondering whether to invest £18,000 in a project which would make extra profits of £10,009 in the first year, £8,000 in the second year and £6,000 in the third year. It’s cost of capital is 10% (in other words, it would require a return of at least 10% on its investment). You are required to evaluate the project.","a-company-is-wondering-whether-to-invest-18-000-in-a-project-which-would-make-extra-profits-of-10-009-in-the-first-year-8-000-in-the-second-year-and-6-000-in-the-third-year-it-s-cost-of-capital",{"id":340,"category":7,"text_question":341,"slug":342},533952,"A brass cube with an edge of 3 cm at 40 °C increased its volume to 27.12 cm3. What is the final temperature that achieves this increase?","a-brass-cube-with-an-edge-of-3-cm-at-40-c-increased-its-volume-to-27-12-cm3-what-is-the-final-temperature-that-achieves-this-increase",{"id":344,"category":7,"text_question":345,"slug":346},533955,"Solve the math problem \r\n400 students are asked if they live in an apartment and have a pet:\r\nApartment: 120\r\nBoth: 30\r\nPet: 90\r\n\r\nThe probability that a randomly selected student not living in an apartment has a pet is","solve-the-math-problem-400-students-are-asked-if-they-live-in-an-apartment-and-have-a-pet-apartment-120-both-30-pet-90-the-probability-that-a-randomly-selected-student-not-living-in-an-apa",{"id":348,"category":7,"text_question":349,"slug":350},533960,"B - (-4)=10","b-4-10",{"id":352,"category":7,"text_question":353,"slug":354},534029,"A job takes 9\n workers 92\n hours to finish. How many hours would it take 5\n workers to complete the same job?","a-job-takes-9-workers-92-hours-to-finish-how-many-hours-would-it-take-5-workers-to-complete-the-same-job",{"id":356,"category":7,"text_question":357,"slug":358},534039,"Estimate the fifth term if the first term is 8 and the common ratio is -1/2","estimate-the-fifth-term-if-the-first-term-is-8-and-the-common-ratio-is-1-2",{"id":360,"category":7,"text_question":361,"slug":362},534131,"15/5+7-5","15-5-7-5",{"id":364,"category":7,"text_question":365,"slug":366},534253,"If X1 and X2 are independent standard normal variables, find P(X1^2 + X2^2 > 2.41)","if-x1-and-x2-are-independent-standard-normal-variables-find-p-x1-2-x2-2-2-41",{"id":368,"category":7,"text_question":369,"slug":370},534344,"Find the minimum value of the function y = -4 x3 + 60 x2 -252 x + 8 for values of x between x = 0 and x = 9\r\n\r\nEnter the value of the function, not the value of x","find-the-minimum-value-of-the-function-y-4-x3-60-x2-252-x-8-for-values-of-x-between-x-0-and-x-9-enter-the-value-of-the-function-not-the-value-of-x",{"id":372,"category":7,"text_question":373,"slug":374},534364,"List five numbers that belong to the 5 (mod 6) numbers. Alternate phrasing, list five numbers that satisfy equation x = 5 (mod 6)","list-five-numbers-that-belong-to-the-5-mod-6-numbers-alternate-phrasing-list-five-numbers-that-satisfy-equation-x-5-mod-6",{"id":376,"category":7,"text_question":377,"slug":378},534399,"viii. An ac circuit with a 80 μF capacitor in series with a coil of resistance 16Ω and inductance 160mH is connected to a 100V, 100 Hz supply is shown below. Calculate\r\n\r\n 7. the inductive reactance \t\r\n 8. the capacitive reactance \t\r\n 9. the circuit impedance and V-I phase angle θ \r\n 10. the circuit current I \t \r\n 11. the phasor voltages VR, VL, VC and VS \t\r\n 12. the resonance circuit frequency \t\r\n\r\nAlso construct a fully labeled and appropriately ‘scaled’ voltage phasor diagram.","viii-an-ac-circuit-with-a-80-uf-capacitor-in-series-with-a-coil-of-resistance-16-and-inductance-160mh-is-connected-to-a-100v-100-hz-supply-is-shown-below-calculate-7-the-inductive-reactanc",{"id":380,"category":7,"text_question":381,"slug":382},534475,"94 divided by 8.75","94-divided-by-8-75",{"id":384,"category":7,"text_question":385,"slug":386},534506,"Cuboid containers (open at the top) should be examined with regard to their volume. The figure below shows a network of such containers (x ∈ Df). Determine a function ƒ (assignment rule and definition area D) that describes the volume of these containers and calculate the volume of such a container if the content of the base area is 16 dm². Show that this function f has neither a local maximum nor a global maximum","cuboid-containers-open-at-the-top-should-be-examined-with-regard-to-their-volume-the-figure-below-shows-a-network-of-such-containers-x-df-determine-a-function-f-assignment-rule-and-definition",{"id":388,"category":7,"text_question":389,"slug":390},534627,"Carmen's age was twice as old as Luis was when Carmen was Luis's age. When Luis is Carmen's age, their ages will add up to 112.","carmen-s-age-was-twice-as-old-as-luis-was-when-carmen-was-luis-s-age-when-luis-is-carmen-s-age-their-ages-will-add-up-to-112",{"id":392,"category":7,"text_question":393,"slug":394},534684,"The domain of the function f(x)=x+7x2−144 \nis (−∞,), ( ,), and ( , ∞).","the-domain-of-the-function-f-x-x-7x2-144-is-and",{"data":396},[397,401,405],{"id":398,"question":399,"answer":400},147082,"What is the limit as x approaches 0 of (sin(x) - x)/(ln(1+x))?","The answer is 1. By applying L'Hospital's Rule, we differentiate the numerator and denominator to get cos(x) - 1 / (1+x). Substituting x=0, we obtain (1-1)/(1+0) = 0/1 = 0. Hence, the limit is 0/1 = 0.",{"id":402,"question":403,"answer":404},100187,"What is the solution to the equation 2x + 5 = 15?","The solution is x = 5. To find the solution, subtract 5 from both sides, leaving 2x = 10. Then divide both sides by 2 resulting in x = 5.",{"id":406,"question":407,"answer":408},120285,"Find the volume of a sphere with radius r. Now differentiate your answer, and explain its meaning in the context of the problem.","The volume of a sphere with radius r is given by V = 4/3πr³. Differentiating, we get dV/dr = 4πr². This represents the rate of change of volume with respect to the radius.",{"sicons":410},{"bxl:facebook-circle":411,"bxl:instagram":415,"mdi:web":417,"la:apple":419,"ph:google-logo-bold":422,"ph:google-logo":425},{"left":412,"top":412,"width":413,"height":413,"rotate":412,"vFlip":157,"hFlip":157,"body":414},0,24,"\u003Cpath fill=\"currentColor\" d=\"M12.001 2.002c-5.522 0-9.999 4.477-9.999 9.999c0 4.99 3.656 9.126 8.437 9.879v-6.988h-2.54v-2.891h2.54V9.798c0-2.508 1.493-3.891 3.776-3.891c1.094 0 2.24.195 2.24.195v2.459h-1.264c-1.24 0-1.628.772-1.628 1.563v1.875h2.771l-.443 2.891h-2.328v6.988C18.344 21.129 22 16.992 22 12.001c0-5.522-4.477-9.999-9.999-9.999\"/>",{"left":412,"top":412,"width":413,"height":413,"rotate":412,"vFlip":157,"hFlip":157,"body":416},"\u003Cpath fill=\"currentColor\" d=\"M11.999 7.377a4.623 4.623 0 1 0 0 9.248a4.623 4.623 0 0 0 0-9.248m0 7.627a3.004 3.004 0 1 1 0-6.008a3.004 3.004 0 0 1 0 6.008\"/>\u003Ccircle cx=\"16.806\" cy=\"7.207\" r=\"1.078\" fill=\"currentColor\"/>\u003Cpath fill=\"currentColor\" d=\"M20.533 6.111A4.6 4.6 0 0 0 17.9 3.479a6.6 6.6 0 0 0-2.186-.42c-.963-.042-1.268-.054-3.71-.054s-2.755 0-3.71.054a6.6 6.6 0 0 0-2.184.42a4.6 4.6 0 0 0-2.633 2.632a6.6 6.6 0 0 0-.419 2.186c-.043.962-.056 1.267-.056 3.71s0 2.753.056 3.71c.015.748.156 1.486.419 2.187a4.6 4.6 0 0 0 2.634 2.632a6.6 6.6 0 0 0 2.185.45c.963.042 1.268.055 3.71.055s2.755 0 3.71-.055a6.6 6.6 0 0 0 2.186-.419a4.6 4.6 0 0 0 2.633-2.633c.263-.7.404-1.438.419-2.186c.043-.962.056-1.267.056-3.71s0-2.753-.056-3.71a6.6 6.6 0 0 0-.421-2.217m-1.218 9.532a5 5 0 0 1-.311 1.688a3 3 0 0 1-1.712 1.711a5 5 0 0 1-1.67.311c-.95.044-1.218.055-3.654.055c-2.438 0-2.687 0-3.655-.055a5 5 0 0 1-1.669-.311a3 3 0 0 1-1.719-1.711a5.1 5.1 0 0 1-.311-1.669c-.043-.95-.053-1.218-.053-3.654s0-2.686.053-3.655a5 5 0 0 1 .311-1.687c.305-.789.93-1.41 1.719-1.712a5 5 0 0 1 1.669-.311c.951-.043 1.218-.055 3.655-.055s2.687 0 3.654.055a5 5 0 0 1 1.67.311a3 3 0 0 1 1.712 1.712a5.1 5.1 0 0 1 .311 1.669c.043.951.054 1.218.054 3.655s0 2.698-.043 3.654z\"/>",{"left":412,"top":412,"width":413,"height":413,"rotate":412,"vFlip":157,"hFlip":157,"body":418},"\u003Cpath fill=\"currentColor\" d=\"M16.36 14c.08-.66.14-1.32.14-2s-.06-1.34-.14-2h3.38c.16.64.26 1.31.26 2s-.1 1.36-.26 2m-5.15 5.56c.6-1.11 1.06-2.31 1.38-3.56h2.95a8.03 8.03 0 0 1-4.33 3.56M14.34 14H9.66c-.1-.66-.16-1.32-.16-2s.06-1.35.16-2h4.68c.09.65.16 1.32.16 2s-.07 1.34-.16 2M12 19.96c-.83-1.2-1.5-2.53-1.91-3.96h3.82c-.41 1.43-1.08 2.76-1.91 3.96M8 8H5.08A7.92 7.92 0 0 1 9.4 4.44C8.8 5.55 8.35 6.75 8 8m-2.92 8H8c.35 1.25.8 2.45 1.4 3.56A8 8 0 0 1 5.08 16m-.82-2C4.1 13.36 4 12.69 4 12s.1-1.36.26-2h3.38c-.08.66-.14 1.32-.14 2s.06 1.34.14 2M12 4.03c.83 1.2 1.5 2.54 1.91 3.97h-3.82c.41-1.43 1.08-2.77 1.91-3.97M18.92 8h-2.95a15.7 15.7 0 0 0-1.38-3.56c1.84.63 3.37 1.9 4.33 3.56M12 2C6.47 2 2 6.5 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2\"/>",{"left":412,"top":412,"width":420,"height":420,"rotate":412,"vFlip":157,"hFlip":157,"body":421},32,"\u003Cpath fill=\"currentColor\" d=\"M20.844 2c-1.64 0-3.297.852-4.407 2.156v.032c-.789.98-1.644 2.527-1.375 4.312c-.128-.05-.136-.035-.28-.094c-.692-.281-1.548-.594-2.563-.594c-3.98 0-7 3.606-7 8.344c0 3.067 1.031 5.942 2.406 8.094c.688 1.078 1.469 1.965 2.281 2.625S11.57 28 12.531 28s1.68-.324 2.219-.563c.54-.238.957-.437 1.75-.437c.715 0 1.078.195 1.625.438c.547.242 1.293.562 2.281.562c1.07 0 1.98-.523 2.719-1.188s1.36-1.519 1.875-2.343c.516-.824.922-1.633 1.219-2.282c.148-.324.258-.593.343-.812s.13-.281.188-.531l.188-.813l-.75-.343a5.3 5.3 0 0 1-1.5-1.063c-.625-.637-1.157-1.508-1.157-2.844A4.08 4.08 0 0 1 24.563 13c.265-.309.542-.563.75-.719c.105-.078.187-.117.25-.156c.062-.04.05-.027.156-.094l.843-.531l-.562-.844c-1.633-2.511-4.246-2.844-5.281-2.844c-.48 0-.82.168-1.25.25c.242-.226.554-.367.75-.624c.004-.004-.004-.028 0-.032q.018-.016.031-.031h.031a6.16 6.16 0 0 0 1.563-4.438L21.78 2zm-1.188 2.313c-.172.66-.453 1.289-.906 1.78l-.063.063c-.382.516-.972.899-1.562 1.125c.164-.652.45-1.312.844-1.812c.008-.012.023-.02.031-.032c.438-.5 1.043-.875 1.656-1.125zm-7.437 5.5c.558 0 1.172.21 1.812.468s1.239.594 2.094.594c.852 0 1.496-.336 2.25-.594s1.559-.469 2.344-.469c.523 0 1.816.333 2.906 1.344c-.191.172-.36.297-.563.531a6.2 6.2 0 0 0-1.53 4.094c0 1.906.831 3.34 1.718 4.25c.55.563.89.696 1.313.938c-.055.125-.086.222-.157.375a19 19 0 0 1-1.093 2.062c-.454.727-1.004 1.434-1.532 1.907c-.527.472-1 .687-1.375.687c-.566 0-.898-.156-1.468-.406S17.581 25 16.5 25c-1.137 0-1.977.336-2.563.594c-.585.258-.89.406-1.406.406c-.246 0-.777-.2-1.375-.688c-.597-.488-1.254-1.23-1.844-2.156c-1.183-1.851-2.093-4.394-2.093-7c0-3.941 2.199-6.343 5-6.343\"/>",{"left":412,"top":412,"width":423,"height":423,"rotate":412,"vFlip":157,"hFlip":157,"body":424},256,"\u003Cpath fill=\"currentColor\" d=\"M228 128a100 100 0 1 1-22.86-63.64a12 12 0 0 1-18.51 15.28A76 76 0 1 0 203.05 140H128a12 12 0 0 1 0-24h88a12 12 0 0 1 12 12\"/>",{"left":412,"top":412,"width":423,"height":423,"rotate":412,"vFlip":157,"hFlip":157,"body":426},"\u003Cpath fill=\"currentColor\" d=\"M224 128a96 96 0 1 1-21.95-61.09a8 8 0 1 1-12.33 10.18A80 80 0 1 0 207.6 136H128a8 8 0 0 1 0-16h88a8 8 0 0 1 8 8\"/>",{"5lK7LS5al0":11,"t96FybqVTi":11,"oVhJaef6Ht":11,"kY4lweXFQm":11,"2QISyIzlyM":11,"5oSQ2a90xd":11,"HGsO2Ckakl":11},"/general/find-the-vertex-focus-and-directrix-of-y-4-1-16-x-7-2"] AppleWebKit/537.36 KHTML,likeGecko Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://gcdn.fx2.io/math-master.org/"}}