Question

For a banquet of 45 people you will need 100g of cooked carrots per person. The setup drop is 15% and the tournament loss is 26%. The cooking loss accounts for another 6%.

222

likes
1112 views

Answer to a math question For a banquet of 45 people you will need 100g of cooked carrots per person. The setup drop is 15% and the tournament loss is 26%. The cooking loss accounts for another 6%.

Expert avatar
Tiffany
4.5
103 Answers
Um die benötigte Menge an rohen Karotten zu berechnen, müssen wir den Garverlust, den Tournierverlust und den Rüstabfall berücksichtigen.

1. Schritt: Tournierverlust
Der Tournierverlust beträgt 26%. Das bedeutet, dass nach dem Tournieren nur 74% des ursprünglichen Gewichts übrig bleiben.
74\% = 0.74

2. Schritt: Rüstabfall
Der Rüstabfall beträgt 15%. Das bedeutet, dass nach dem Rüsten nur 85% des ursprünglichen Gewichts übrig bleiben.
85\% = 0.85

3. Schritt: Garverlust
Der Garverlust beträgt 6%. Das bedeutet, dass nach dem Garen nur 94% des ursprünglichen Gewichts übrig bleiben.
94\% = 0.94

4. Schritt: Gesamtverlust
Um den Gesamtverlust zu berechnen, multiplizieren wir die einzelnen Verluste: Tournierverlust, Rüstabfall und Garverlust.
Gesamtverlust = 0.74 \times 0.85 \times 0.94

5. Schritt: Berechnung der benötigten Menge
Die benötigte Menge an rohen Karotten für eine Person beträgt 100g. Um die Menge für 45 Personen zu berechnen, multiplizieren wir die benötigte Menge pro Person mit der Anzahl der Personen und dem Gesamtverlust.
Menge = 100g \times 45 \times (0.74 \times 0.85 \times 0.94)

Antwort: Die benötigte Menge an rohen Karotten für das Bankett mit 45 Personen beträgt ca. 2922g.

Frequently asked questions (FAQs)
What is the graph of the logarithmic function f(x) = log2(x) - log2(3), where x > 0?
+
Find the maximum number of complete cycles in the interval [0, 2π] for the sine function f(x) = sin x.
+
What is the equation of a hyperbola with vertices at (1, 3) and (-1, 3), and center at (0, 3)?
+
New questions in Mathematics
What is the amount of interest of 75,000 at 3.45% per year, at the end of 12 years and 6 months?
Find the equation of the normal to the curve y=x²+4x-3 at point(1,2)
Exercise 4 - the line (AC) is perpendicular to the line (AB) - the line (EB) is perpendicular to the line (AB) - the lines (AE) and (BC) intersect at D - AC = 2.4 cm; BD = 2.5 cm: DC = 1.5 cm Determine the area of triangle ABE.
58+861-87
4.2x10^_6 convert to standard notation
What is the r.p.m. required to drill a 13/16" hole in mild steel if the cutting speed is 100 feet per minute?
You are planning to buy a car worth $20,000. Which of the two deals described below would you choose, both with a 48-month term? (NB: estimate the monthly payment of each offer). i) the dealer offers to take 10% off the price, then lend you the balance at an annual percentage rate (APR) of 9%, monthly compounding. ii) the dealer offers to lend you $20,000 (i.e., no discount) at an APR of 3%, monthly compounding.
If f(x,y)=6xy^2+3y^3 find (∫3,-2) f(x,y)dx.
prove that if n odd integer then n^2+5 is even
20% of 3500
What’s the slope of a tangent line at x=1 for f(x)=x2. We can find the slopes of a sequence of secant lines that get closer and closer to the tangent line. What we are working towards is the process of finding a “limit” which is a foundational topic of calculus.
Use a pattern to prove that (-2)-(-3)=1
TEST 123123+1236ttttt
In a company dedicated to packaging beer in 750 mL containers, a normal distribution is handled in its packaging process, which registers an average of 745 mL and a standard deviation of 8 mL. Determine: a) The probability that a randomly selected container exceeds 765 mL of beer b) The probability that the beer content of a randomly selected container is between 735 and 755 mL.
The mass of 120 molecules of X2C4 is 9127.2 amu. Identify the unknown atom, X, by finding the atomic mass. The atomic mass of C is 12.01 amu/atom
Translate to an equation and solve. Let x be the unknown number: What number is 52% of 81.
Emile organizes a community dance to raise funds. In addition to paying $300 to rent the room, she must rent chairs at $2 each. The quantity of chairs rented will be equal to the number of tickets sold. She sells tickets for $7 each. How much should she sell to raise money?
Find the symmetric point to a point P = (2,-7,10) with respect to a plane containing a point Po = (3, 2, 2) and perpendicular to a vector u = [1, -3, 2].
g(x)=3(x+8). What is the value of g(12)
15=5(x+3)