Question

For a banquet of 45 people you will need 100g of cooked carrots per person. The setup drop is 15% and the tournament loss is 26%. The cooking loss accounts for another 6%.

222

likes
1112 views

Answer to a math question For a banquet of 45 people you will need 100g of cooked carrots per person. The setup drop is 15% and the tournament loss is 26%. The cooking loss accounts for another 6%.

Expert avatar
Tiffany
4.5
103 Answers
Um die benötigte Menge an rohen Karotten zu berechnen, müssen wir den Garverlust, den Tournierverlust und den Rüstabfall berücksichtigen.

1. Schritt: Tournierverlust
Der Tournierverlust beträgt 26%. Das bedeutet, dass nach dem Tournieren nur 74% des ursprünglichen Gewichts übrig bleiben.
74\% = 0.74

2. Schritt: Rüstabfall
Der Rüstabfall beträgt 15%. Das bedeutet, dass nach dem Rüsten nur 85% des ursprünglichen Gewichts übrig bleiben.
85\% = 0.85

3. Schritt: Garverlust
Der Garverlust beträgt 6%. Das bedeutet, dass nach dem Garen nur 94% des ursprünglichen Gewichts übrig bleiben.
94\% = 0.94

4. Schritt: Gesamtverlust
Um den Gesamtverlust zu berechnen, multiplizieren wir die einzelnen Verluste: Tournierverlust, Rüstabfall und Garverlust.
Gesamtverlust = 0.74 \times 0.85 \times 0.94

5. Schritt: Berechnung der benötigten Menge
Die benötigte Menge an rohen Karotten für eine Person beträgt 100g. Um die Menge für 45 Personen zu berechnen, multiplizieren wir die benötigte Menge pro Person mit der Anzahl der Personen und dem Gesamtverlust.
Menge = 100g \times 45 \times (0.74 \times 0.85 \times 0.94)

Antwort: Die benötigte Menge an rohen Karotten für das Bankett mit 45 Personen beträgt ca. 2922g.

Frequently asked questions (FAQs)
Question: Find the y-intercept of the logarithmic function y = log(x), graphed on a coordinate plane with x ranging from 1 to 10. (
+
What is the limit as x approaches 2 of (x^3 + 4x^2 - 5) / (x - 2)?
+
Math Question: Convert the number 25,000,000,000,000,000 to scientific notation.
+
New questions in Mathematics
A particular employee arrives at work sometime between 8:00 a.m. and 8:50 a.m. Based on past experience the company has determined that the employee is equally likely to arrive at any time between 8:00 a.m. and 8:50 a.m. Find the probability that the employee will arrive between 8:05 a.m. and 8:40 a.m. Round your answer to four decimal places, if necessary.
11(4x-9)= -319
8x-(5-x)
x/20*100
(-5/6)-(-5/4)
Estimate the quotient for 3.24 ÷ 82
X~N(2.6,1.44). find the P(X<3.1)
ind the z-score for which 72% of the distribution's area lies between -z and z. -1.7417, 1.7417 -1.1538, 1.1538 -1.0803, 1.0803 -2.826, 2.826
Your grandfather has run a small high street pharmacy for 40 years. After much persuasion, he has agreed to open a digital store online. List 5 potential ways to improve sales and/or margins by having a digital pharmacy through the utilisation of historic or new sales data.
Let f and g be defined in R and suppose that there exists M > 0 such that |f(x) − f(p)| ≤ M|g(x) − g(p)|, for all x. Prove that if g is continuous in p, then f will also be continuous in p.
48 kg of 30% sulfuric acid in a mixture of 10% and 40% sulfuric acid arose. How many kilograms were each of the original solutions?
nI Exercises 65-68, the latitudes of a pair of cities are given. Assume that one city si directly south of the other and that the earth is a perfect sphere of radius 4000 miles. Use the arc length formula in terms of degrees to find the distance between the two cities. 65. The North Pole: latitude 90° north Springfield, Illinois: latitude 40° north
Determine the kinetic energy of a baseball whose mass is 100 grams and has a speed of 30 m/s.
Kayla started a book club at her school. The number of girls in the book club was one more than twice the number of boys. If there are 15 girls in the book club, how many boys are in the club?
How many digits are there in Hindu-Arabic form of numeral 26 × 1011
8(x+4) -4=4x-1
3(x-4)=156
2p-6=8+5(p+9)
The length of a rectangle is five more than its width. if the perimeter is 120, find both the length and the width.
Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.