1. Let the width of the rectangular piece of metal be \( w \) inches. Then, the length will be \( w + 5 \) inches.
2. After cutting squares with sides 1 inch from each corner and folding the flaps upward, the resulting dimensions of the open box will be:
- Width: \( w - 2 \) inches
- Length: \( w + 3 \) inches
- Height: 1 inch
3. The volume \( V \) of the box is given as 546 cubic inches. Using the volume formula \( V = \text{length} \times \text{width} \times \text{height} \):
546 = (w + 3)(w - 2) \cdot 1
4. Simplify and solve for \( w \):
546 = (w + 3)(w - 2)
546 = w^2 + 3w - 2w - 6
546 = w^2 + w - 6
w^2 + w - 552 = 0
5. Solve the quadratic equation using the quadratic formula \( w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \):
a = 1, b = 1, c = -552
w = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-552)}}{2 \cdot 1}
w = \frac{-1 \pm \sqrt{1 + 2208}}{2}
w = \frac{-1 \pm \sqrt{2209}}{2}
w = \frac{-1 \pm 47}{2}
6. We have two possible solutions for \( w \):
w=\frac{46}{2}=23\quad
w = \frac{-48}{2} = -24 \quad \text{(not possible, width and length must be positive)}
7. Therefore, the original dimensions of the piece of metal are:
\boxed{\text{Width }=23\text{ inches, Length }=28\text{ inches}}