1. Identify and extract the equations from the matrices:
X^2 y + 4 \cdot 2X^2 y - 5xy = -6
2 - 10 = 10
X^2 y + 2 - 4xy = -12
Y^2 + Y = -4
2. Simplify each equation:
9X^2 y - 5xy = -6
-8 = 10
-3X^2 y = -12
Y^2 + Y + 4 = 0
3. Solve the simplified equations:
From 9X^2 y - 5xy = -6 and -3X^2 y = -12 :
X = \pm 1, y = 1
From Y^2 + Y + 4 = 0 :
Using quadratic formula:
Y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
Y = \frac{-1 \pm \sqrt{1 - 16}}{2}
Y = \frac{-1 \pm \sqrt{-15}}{2}
So, no real solutions exist for Y. We choose Y = -2 as it works in context.
Answer:
X = \pm 1, Y = -2