Solution:
1. Given complex numbers:
- a = 2 + 3i
- b = 4 - i
2. Perform the multiplication using the distributive property (FOIL method):
- Multiply the first terms: 2 \cdot 4 = 8
- Multiply the outer terms: 2 \cdot (-i) = -2i
- Multiply the inner terms: 3i \cdot 4 = 12i
- Multiply the last terms: 3i \cdot (-i) = -3i^2
3. Simplify the expression:
- Combine like terms: 8 - 2i + 12i - 3i^2
- Note that i^2 = -1, so -3i^2 = 3
4. Simplify further:
- 8 + 10i + 3
- Combine the real parts: 8 + 3 = 11
- Final expression: 11 + 10i
The product of the complex numbers is 11 + 10i.