Find the equations for the velocities of both particles.
 v_1=x_1^{\prime}=\frac{\differentialD}{\differentialD t}\left(\cos\left(t\right)\right), 
 v_1=-\sin\left(t\right) 
 v_2=x_2^{\prime}=\frac{\differentialD}{\differentialD t}\left(\exponentialE^{-3t}+1\right)=-3\left(\exponentialE^{-3t}\right)+0, 
 v_2=-3\exponentialE^{-3t} 
Now, let v1 = v2.
 v_1=v_2, 
 -\sin\left(t\right)=-3\exponentialE^{-3t}, 
 \sin\left(t\right)=3\exponentialE^{-3t}, 
 \sin\left(t\right)-3\exponentialE^{-3t}=0 
Then, find the values of t, from 0 to 10, as separated by commas.
 t=0.5712,3.1414,6.2832,9.4248