1. Start with the equation:
x^2 + 11x + 24 = 0
2. Isolate the constant term on one side:
x^2 + 11x = -24
3. Complete the square by adding and subtracting the square of half the coefficient of \( x \):
x^2 + 11x + \left(\frac{11}{2}\right)^2 = -24 + \left(\frac{11}{2}\right)^2
4. Simplify:
x^2 + 11x + \frac{121}{4} = -24 + \frac{121}{4}
5. Convert -24 to a fraction with a common denominator:
-24 = \frac{-96}{4}
6. Combine the fractions:
x^2 + 11x + \frac{121}{4} = \frac{-96}{4} + \frac{121}{4}
x^2 + 11x + \frac{121}{4} = \frac{25}{4}
7. Rewrite the left-hand side as a square:
\left(x + \frac{11}{2}\right)^2 = \frac{25}{4}
8. Isolate the perfect square term:
\left(x + \frac{11}{2}\right)^2 = \frac{25}{4}