1. Start with the equation: 
 x^2 + 11x + 24 = 0  
2. Isolate the constant term on one side:
 x^2 + 11x = -24  
3. Complete the square by adding and subtracting the square of half the coefficient of \( x \):
 x^2 + 11x + \left(\frac{11}{2}\right)^2 = -24 + \left(\frac{11}{2}\right)^2  
4. Simplify:
 x^2 + 11x + \frac{121}{4} = -24 + \frac{121}{4}  
5. Convert -24 to a fraction with a common denominator:
 -24 = \frac{-96}{4}  
6. Combine the fractions:
 x^2 + 11x + \frac{121}{4} = \frac{-96}{4} + \frac{121}{4}  
 x^2 + 11x + \frac{121}{4} = \frac{25}{4}  
7. Rewrite the left-hand side as a square:
 \left(x + \frac{11}{2}\right)^2 = \frac{25}{4}  
8. Isolate the perfect square term:
 \left(x + \frac{11}{2}\right)^2 = \frac{25}{4}