Question

The concentrations of bromides in an industrial effluent density 1.00 g/ml are determined using a bromide ion selective electrode. The 0.005 M and 0.010M standards give potential readings of -0.109 v and -0.125 v, respectively. The sample gives a reading of -0.120 v. What is the bromide concentration of the sample in ppm? Br: 79.9 g/mol

292

likes
1461 views

Answer to a math question The concentrations of bromides in an industrial effluent density 1.00 g/ml are determined using a bromide ion selective electrode. The 0.005 M and 0.010M standards give potential readings of -0.109 v and -0.125 v, respectively. The sample gives a reading of -0.120 v. What is the bromide concentration of the sample in ppm? Br: 79.9 g/mol

Expert avatar
Jett
4.7
97 Answers
Los potenciales eléctricos siguen la ecuación de Nernst. Vamos a encontrar la pendiente y la intersección para la línea de calibración primero, y luego usar eso para encontrar la concentración de la muestra.

1. Primeramente, convertimos las concentraciones de Molaridad (M) de las soluciones estándar a su logaritmo en base 10:
\log(0.005) = \log 10^{-2.3} = -2.301
\log(0.010) = \log 10^{-2} = -2

2. Usamos las lecturas de potencial para encontrar la pendiente y la intersección mediante una regresión lineal simple entre el potencial (E) y el logaritmo de la concentración (\(\log [Br^-]\)):
m = \frac{E_2 - E_1}{\log [Br^-]_2 - \log [Br^-]_1} = \frac{-0.125 - (-0.109)}{-2 - (-2.301)}
m = \frac{-0.125 + 0.109}{-2 + 2.301}
m = \frac{-0.016}{0.301}
m \approx -0.05315 \, \text{V}

3. Ahora encontramos la intersección (b) usando una de las parejas de datos:
E = m \log([Br^-]) + b
-0.109 = -0.05315(-2.301) + b
b = -0.109 + 0.1224
b = 0.0134 \, \text{V}

4. Ahora usamos la ecuación de Nernst con la lectura de la muestra para encontrar \(\log[Br^-]\):
E = m \log([Br^-]) + b
-0.120 = -0.05315 \log([Br^-]) + 0.0134
-0.120 - 0.0134 = -0.05315 \log([Br^-])
-0.1334 = -0.05315 \log([Br^-])
\log([Br^-]) = \frac{-0.1334}{-0.05315}
\log([Br^-]) \approx 2.51

5. Deshacemos el logaritmo para encontrar la concentración en M:
[Br^-] = 10^{2.51}
[Br^-] \approx 0.00309 \, \text{M}

6. Convertimos la concentración de M a ppm usando la masa molar de Br:
\text{ppm} = [Br^-] (\text{M}) \times \text{masa molar de Br} \times \frac{\text{densidad de la muestra}}{\text{densidad del agua}} \times 1000
\text{ppm} = 0.00309 \times 79.9 \times 1 \times 1000
\text{ppm} \approx 49.9 \ \text{ppm}

Respuesta: 49.9 \ \text{ppm}

Frequently asked questions (FAQs)
What is the probability of rolling exactly 3 sixes in 10 fair, six-sided dice rolls?
+
What is the amplitude and period, respectively, of the cosine function f(x) = cos x?
+
What is 3x + 5 = 20?
+
New questions in Mathematics
5 . {2/5 + [ (8/-9) - (1/-7) + (-2/5) ] ÷ (2/-5)} . 8/15
431414-1*(11111-1)-4*(5*3)
8x-(5-x)
the value of sin 178°58'
What will be the density of a fluid whose volume is 130 cubic meters contains 16 technical units of mass? If required Consider g=10 m/s2
(5u + 6)-(3u+2)=
A job takes 9 workers 92 hours to finish. How many hours would it take 5 workers to complete the same job?
is the x element (180,270), if tanx-3cotx=2, sinx ?
A person decides to invest money in fixed income securities to redeem it at the end of 3 years. In this way, you make monthly deposits of R$300.00 in the 1st year, R$400.00 in the 2nd year and R$500.00 in the 3rd year. Calculate the amount, knowing that compound interest is 0.6% per month for the entire period. The answer is 15,828.60
The simple average of 15 , 30 , 40 , and 45 is
Use a pattern approach to explain why (-2)(-3)=6
Determine a general formula​ (or formulas) for the solution to the following equation.​ Then, determine the specific solutions​ (if any) on the interval [0,2π). cos30=0
Let f and g be defined in R and suppose that there exists M > 0 such that |f(x) − f(p)| ≤ M|g(x) − g(p)|, for all x. Prove that if g is continuous in p, then f will also be continuous in p.
Calculate the change in internal energy of a gas that receives 16000 J of heat at constant pressure (1.3 atm) expanding from 0.100 m3 to 0.200 m3. Question 1Answer to. 7050J b. 2125J c. None of the above d. 2828J and. 10295 J
Calculate the area of the parallelogram with adjacent vertices (1,4, −2), (−3,1,6) 𝑦 (1, −2,3)
In an economy with C= 10+0.8 Yd ; I= 20+0.1Y ; G= 100 ; X= 20 ; M=10+0.2Y ; T=-10+0.2Y and R= 10, when knew that Yd= Y-T+R. How much is the budget? A. -23.18 B. -28.13 C. -13.28 D. -32.18
2x-5-x+2=5x-11
Consider the function f(x)=1/2(x+1)^2-3. Use the preceding/following interval method to estimate the instantaneous rate of change at 𝑥 = 1.
g(x)=3(x+8). What is the value of g(12)
6(k-7) -2=5