1. Determine the maximum height.
2. Solve \( \frac{d h}{d x} = 0 \).
3. Substitute the time \(x\) back into \(h(x)\).
4. Calculate the duration from \(t = 0\) to the maximum height.
5. Use the average speed formula v_{\text{avg}} = \frac{\Delta h}{\Delta t} .
1. Using derivative: \frac{d}{d x} (20 x - 5 x^2 + 2) = 20 - 10x
2. Setting the derivative to zero: 20 - 10x = 0 \Rightarrow x = 2
3. Substitute \( x = 2 \) into the height function: h(2) = 20(2) - 5(2)^2 + 2 = 40 - 20 + 2 = 22 \, \text{m}
4. Duration from start to maximum height \( \Delta t = 2 - 0 = 2 \, \text{s} \)
5. Average speed:
v_{\text{avg}} = \frac{\Delta h}{\Delta t} = \frac{22 - 2}{2 - 0} = \frac{20}{2} = 10 \, \text{m/s}