Question

The ninth term of a given geometric progression, with reason q , is 1792, and its fourth term is 56. Thus, calculate the fourth term of another geometric progression, whose ratio is q +1 and whose first term is equal to the first term of the first P.G. described.

194

likes
970 views

Answer to a math question The ninth term of a given geometric progression, with reason q , is 1792, and its fourth term is 56. Thus, calculate the fourth term of another geometric progression, whose ratio is q +1 and whose first term is equal to the first term of the first P.G. described.

Expert avatar
Jayne
4.4
106 Answers
To find the fourth term of the second geometric progression, we need to find the first term.

Let the first term of the first geometric progression be 'a' and the common ratio be 'q'.

We are given that the fourth term of the first geometric progression is 56.
The nth term of a geometric progression is given by:

a_n=a\cdot(q)^{n-1}

So, using the formula for the nth term of a geometric progression, we have:

a \cdot q^3 = 56 \quad \Rightarrow (1)

We are also given that the ninth term of the first geometric progression is 1792.
So, using the same formula, we have:

a \cdot q^8 = 1792 \quad \Rightarrow (2)

Dividing equation (2) by equation (1), we get:

\frac{a \cdot q^8}{a \cdot q^3} = \frac{1792}{56}

Simplifying, we have:

q^5 = 32

Taking the 5th root of both sides, we get:

q = \sqrt[5]{32} = 2

Now that we know the value of 'q', we can go back to equation (1) and solve for 'a' to find the first term of the first geometric progression:

a \cdot q^3 = 56
a \cdot 2^3 = 56
a \cdot 8 = 56
a = \frac{56}{8} = 7

So, the first term of the given geometric progression is 7, and the ratio is 2.

Now, we need to find the fourth term of another geometric progression with ratio q +1 and the same first term (7) as the first geometric progression.

The fourth term of a geometric progression is given by:

a_4=a\cdot(q+1)^{4-1}

Substituting the values, we have:

a_4 = 7 \cdot (2 + 1)^{4-1}
a_4 = 7 \cdot 3^3
a_4 = 7 \cdot 27
a_4 = 189

Therefore, the fourth term of the second geometric progression is 189.

Answer: The fourth term of the second geometric progression is 189.

Frequently asked questions (FAQs)
What is the volume of a rectangular solid with length L = 10 units, width W = 5 units, and height H = 3 units?
+
What is the value of sine of π/6 on the unit circle?
+
What is the sum of the measures of the interior angles of an isosceles triangle if one angle measures 40 degrees?
+
New questions in Mathematics
5 . {2/5 + [ (8/-9) - (1/-7) + (-2/5) ] ÷ (2/-5)} . 8/15
431414-1*(11111-1)-4*(5*3)
8x-(5-x)
the value of sin 178°58'
What will be the density of a fluid whose volume is 130 cubic meters contains 16 technical units of mass? If required Consider g=10 m/s2
(5u + 6)-(3u+2)=
A job takes 9 workers 92 hours to finish. How many hours would it take 5 workers to complete the same job?
is the x element (180,270), if tanx-3cotx=2, sinx ?
A person decides to invest money in fixed income securities to redeem it at the end of 3 years. In this way, you make monthly deposits of R$300.00 in the 1st year, R$400.00 in the 2nd year and R$500.00 in the 3rd year. Calculate the amount, knowing that compound interest is 0.6% per month for the entire period. The answer is 15,828.60
The simple average of 15 , 30 , 40 , and 45 is
Use a pattern approach to explain why (-2)(-3)=6
Determine a general formula​ (or formulas) for the solution to the following equation.​ Then, determine the specific solutions​ (if any) on the interval [0,2π). cos30=0
Let f and g be defined in R and suppose that there exists M > 0 such that |f(x) − f(p)| ≤ M|g(x) − g(p)|, for all x. Prove that if g is continuous in p, then f will also be continuous in p.
Calculate the change in internal energy of a gas that receives 16000 J of heat at constant pressure (1.3 atm) expanding from 0.100 m3 to 0.200 m3. Question 1Answer to. 7050J b. 2125J c. None of the above d. 2828J and. 10295 J
Calculate the area of the parallelogram with adjacent vertices (1,4, −2), (−3,1,6) 𝑦 (1, −2,3)
In an economy with C= 10+0.8 Yd ; I= 20+0.1Y ; G= 100 ; X= 20 ; M=10+0.2Y ; T=-10+0.2Y and R= 10, when knew that Yd= Y-T+R. How much is the budget? A. -23.18 B. -28.13 C. -13.28 D. -32.18
2x-5-x+2=5x-11
Consider the function f(x)=1/2(x+1)^2-3. Use the preceding/following interval method to estimate the instantaneous rate of change at 𝑥 = 1.
g(x)=3(x+8). What is the value of g(12)
6(k-7) -2=5