Question

Topic: mean value theorem. 1# In each of the following functions, check the function satisfies the criteria established in Rolle's theorem and find all the values C in the given interval where F (C) =0 F(x) =x3 -4x in [-2,2]

155

likes
774 views

Answer to a math question Topic: mean value theorem. 1# In each of the following functions, check the function satisfies the criteria established in Rolle's theorem and find all the values C in the given interval where F (C) =0 F(x) =x3 -4x in [-2,2]

Expert avatar
Seamus
4.9
98 Answers
Para verificar si la función satisface los criterios establecidos en el teorema de Rolle, necesitamos seguir estos pasos:

1. La función F(x) = x^3 - 4x es continua en el intervalo [-2, 2] ya que es un polinomio.
2. La función es derivable en el intervalo (-2, 2) ya que es un polinomio.
3. Debemos verificar si F(-2) = F(2) para asegurarnos de que se cumplan las condiciones del teorema de Rolle.

Ahora vamos a verificar si se cumple el teorema de Rolle para la función dada:

1. Calculamos F(-2) y F(2) :

F(-2) = (-2)^3 - 4(-2) = -8 + 8 = 0

F(2) = 2^3 - 4(2) = 8 - 8 = 0

2. Como F(-2) = F(2) = 0 , se cumple la condición F(a) = F(b) donde a = -2 y b = 2 .

Por lo tanto, podemos aplicar el teorema de Rolle y encontrar el valor de c en el intervalo (-2, 2) tal que F'(c) = 0 .

Calculamos la derivada de F(x) :

F'(x) = \frac{d}{dx}(x^3 - 4x) = 3x^2 - 4

Para encontrar c , igualamos F'(c) a 0:

3c^2 - 4 = 0

3c^2 = 4

c^2 = \frac{4}{3}

c = \pm \sqrt{\frac{4}{3}} = \pm \frac{2}{\sqrt{3}} = \pm \frac{2\sqrt{3}}{3}

Por lo tanto, los valores de c en el intervalo [-2, 2] donde F(c) = 0 son c = -\frac{2\sqrt{3}}{3} y c = \frac{2\sqrt{3}}{3} .

\boxed{c = -\frac{2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3}}

Frequently asked questions (FAQs)
What is the area of a triangle with side lengths 4, 5, and 7 using Heron's Formula?
+
Math question: What is the median of the set {12, 18, 7, 4, 15}?
+
What is the extremum value of the function f(x) = 2x^2 - 5x + 3 over the interval [0, 4]?
+
New questions in Mathematics
Find 2 numbers that the sum of 1/3 of the first plus 1/5 of the second will be equal to 13 and that if you multiply the first by 5 and the second by 7 you get 247 as the sum of the two products with replacement solution
calculate the derivative by the limit definition: f(x) = 6x^3 + 2
-8+3/5
X^2 = 25
The graph of the equation x²= 4py is a parabola with focus F(_,_) and directrix y=_____ Therefore, the graph of x²=12y is a parabola with focus F(_,_) and a directrix y=_____
Elliot opened a savings account and deposited $5000.00 as principal. The account earns 4% interest, compounded annually. How much interest will he earn after 5 years? Round your answer to the nearest cent.
If f(x) = 3x 2, what is the value of x so that f(x) = 11?
Identify a pattern in the list of numbers.Then use this pattern to find the next number. 37,31,25,19,13
4. Show that if n is any integer, then n^2 3n 5 is an odd integer
is the x element (180,270), if tanx-3cotx=2, sinx ?
Convert 78 percent to a decimal
78 percent to a decimal
Find all real numbers x that satisfy the equation \sqrt{x^2-2}=\sqrt{3-x}
form a key for your lock containing the numbers 2 2 5 8 How many different keys can you form?
A property sold for $745,000 in a co-brokered transaction. The seller has agreed to pay a 7% commission to the listing firm. The listing firm has agreed to equally split the commission with the selling firm. If the buyer’s broker will receive 8% of the selling firm’s commission, how much commission will the buyer’s broker receive? $14,900 $3725 $$37250 $18625
Oi👋🏻 Toque em "Criar Nova Tarefa" para enviar seu problema de matemática. Um dos nossos especialistas começará a trabalhar nisso imediatamente!
Evaluate ab+dc if a=56 , b=−34 , c=0.4 , and d=12 . Write in simplest form.
6(k-7) -2=5
A small box measures 10 in. by 4 in. by 6 in. high. Find the volume of the box.
Suppose a car license plate consists of 2 letters and two digits of which the first cannot be zero. How many different plates can be engraved? consider only 26 letters and 10 digits draw an example of this.