P = \$9,000.00
r = 8.75\% \text{ or } 0.0875
t = 8 \text{ years}
n = 26 \text{ (biweekly)}
Use the compound interest formula:
A = P \left(1 + \frac{r}{n}\right)^{nt}
Substitute the values into the formula:
A = 9000 \left(1 + \frac{0.0875}{26}\right)^{26 \times 8}
Calculate the value:
A = 9000 \left(1 + \frac{0.0875}{26}\right)^{208}
A = 9000 \left(1.00336538\right)^{208}
A \approx 37,246.46
Therefore, the compound amount is:
\boxed{ \$37,246.46 }