Question

we collect around 1000 seeds per sunflower. A sunflower seed weighs about 0.05 grams. approximately 25 liters of oil are extracted from 100 kilograms of sunflower seeds. Lénaïc uses 3 tablespoons of his salad sauce (for 6 people). The content of 6 tablespoons of oil is approximately equal to 1 deciliter. How many sunflowers do you need to plant to produce the oil needed to make salad dressing? can I have the explanation with the answer?

118

likes
589 views

Answer to a math question we collect around 1000 seeds per sunflower. A sunflower seed weighs about 0.05 grams. approximately 25 liters of oil are extracted from 100 kilograms of sunflower seeds. Lénaïc uses 3 tablespoons of his salad sauce (for 6 people). The content of 6 tablespoons of oil is approximately equal to 1 deciliter. How many sunflowers do you need to plant to produce the oil needed to make salad dressing? can I have the explanation with the answer?

Expert avatar
Hester
4.8
116 Answers
Tout d'abord, calculons combien d'huile une graine de tournesol produit.

Si 100 kilogrammes de graines de tournesol produisent 25 litres d'huile, nous pouvons déterminer combien d'huile une seule graine produit :

1. Convertissons 100 kilogrammes en grammes, puisque nous savons que le poids d'une seule graine est en grammes :
100 kilogrammes = 100,000 grammes

2. Ensuite, divisons le volume total d'huile par le poids total des graines pour obtenir le rendement en huile par gramme de graines :
25 litres (25,000 millilitres) / 100,000 grammes = 0,25 millilitres par gramme

3. Puisque nous savons qu'une graine de tournesol pèse environ 0,05 gramme, calculons combien d'huile une graine produit :
0,05 gramme * 0,25 millilitres par gramme = 0,0125 millilitres par graine

Maintenant, calculons combien de graines nous devons planter pour obtenir 1 décilitre (100 millilitres) d'huile, sachant que 6 cuillères à soupe d'huile sont environ égales à 1 décilitre :

1 décilitre / 0,0125 millilitres par graine = 100 millilitres / 0,0125 millilitres par graine = 8000 graines

Nous avons besoin de 8000 graines pour produire 1 décilitre d'huile.

Ensuite, déterminons combien de tournesols nous devons planter pour produire l'huile nécessaire à la sauce salade. Puisque Lénaïc utilise 3 cuillères à soupe de sauce pour 6 personnes, et 6 cuillères à soupe équivalent à 1 décilitre, nous avons besoin de la moitié d'un décilitre pour 3 cuillères à soupe :

La moitié d'un décilitre est de 50 millilitres, donc nous effectuons le même calcul :

50 millilitres / 0,0125 millilitres par graine = 4000 graines

Puisqu'un tournesol produit environ 1000 graines :

4000 graines / 1000 graines par tournesol = 4 tournesols

Donc, Lénaïc devrait planter 4 tournesols pour produire suffisamment d'huile pour sa sauce Salade pour 6 personnes.

\boxed{4 \text{ tournesols}}

Frequently asked questions (FAQs)
What is the volume of a rectangular solid with length l, width w, and height h? (V = l * w * h)
+
What is the surface area of a rectangular prism with dimensions 5 cm, 8 cm, and 10 cm?
+
Math question: Find the extrema of the function f(x) = 2x^3 - 6x^2 + 9x - 3 on the interval [-2, 2].
+
New questions in Mathematics
Calculate to represent the function whose graph is a line that passes through the points (1,2) and (−3,4). What is your slope?
a to the power of 2 minus 16 over a plus 4, what is the result?
-11+29-18
3x+2/2x-1 + 3+x/2x-1 - 3x-2/2x-1
(3x^(2) 9x 6)/(5x^(2)-20)
How many anagrams of the word STROMEC there that do not contain STROM, MOST, MOC or CEST as a subword? By subword is meant anything that is created by omitting some letters - for example, the word EMROSCT contains both MOC and MOST as subwords.
A merchant can sell 20 electric shavers a day at a price of 25 each, but he can sell 30 if he sets a price of 20 for each electric shaver. Determine the demand equation, assuming it is linear. Consider (P= price, X= quantity demanded)
Let r: x - y 5 = 0. Determine a general equation of the line s parallel to the line r, which forms an isosceles triangle with area 8 with the line x = 5 and the Ox axis.
Given (3x+2)E [2;14] how much money (in soles) does Sophia have if numerically it is the greatest value of x?
19) If the temperature of -8°C decreases by 12°C, how much will it be? a)-20°C -4°C c) 4°C d) 20°C
I. Order to add 40.25+1.31+.45 what is the first action to do ?
The simple average of 15 , 30 , 40 , and 45 is
From 1975 through 2020 the mean annual gain of the Dow Jones Industrial Average was 652. A random sample of 34 years is selected from this population. What is the probability that the mean gain for the sample was between 400 and 800? Assume the standard deviation is 1539
User One of the applications of the derivative of a function is its use in Physics, where a function that at every instant t associates the number s(t), this function s is called the clockwise function of the movement. By deriving the time function we obtain the velocity function at time t, denoted by v(t). A body has a time function that determines its position in meters at time t as S(t)=t.³√t+2.t . Present the speed of this body at time t = 8 s.
For what values of m is point P (m, 1 - 2m) in the 2⁰ quadrant?
A hardware bill totals $857.63 with discounts of 5% and 3%. What is the net cost of the Material ?
Given a circle 𝑘(𝑆; 𝑟 = 4 𝑐𝑚) and a line |𝐴𝐵| = 2 𝑐𝑚. Determine and construct the set of all centers of circles that touch circle 𝑘 and have radius 𝑟 = |𝐴𝐵|
How much does 7.2 moles of ammonium dichromate weigh? (NH4)2Cr2O7
Solve the following system of equations using substitution. y=-4x- 11. 3x+7y=-2
Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.