Question

we collect around 1000 seeds per sunflower. A sunflower seed weighs about 0.05 grams. approximately 25 liters of oil are extracted from 100 kilograms of sunflower seeds. Lénaïc uses 3 tablespoons of his salad sauce (for 6 people). The content of 6 tablespoons of oil is approximately equal to 1 deciliter. How many sunflowers do you need to plant to produce the oil needed to make salad dressing? can I have the explanation with the answer?

118

likes
589 views

Answer to a math question we collect around 1000 seeds per sunflower. A sunflower seed weighs about 0.05 grams. approximately 25 liters of oil are extracted from 100 kilograms of sunflower seeds. Lénaïc uses 3 tablespoons of his salad sauce (for 6 people). The content of 6 tablespoons of oil is approximately equal to 1 deciliter. How many sunflowers do you need to plant to produce the oil needed to make salad dressing? can I have the explanation with the answer?

Expert avatar
Hester
4.8
117 Answers
Tout d'abord, calculons combien d'huile une graine de tournesol produit.

Si 100 kilogrammes de graines de tournesol produisent 25 litres d'huile, nous pouvons déterminer combien d'huile une seule graine produit :

1. Convertissons 100 kilogrammes en grammes, puisque nous savons que le poids d'une seule graine est en grammes :
100 kilogrammes = 100,000 grammes

2. Ensuite, divisons le volume total d'huile par le poids total des graines pour obtenir le rendement en huile par gramme de graines :
25 litres (25,000 millilitres) / 100,000 grammes = 0,25 millilitres par gramme

3. Puisque nous savons qu'une graine de tournesol pèse environ 0,05 gramme, calculons combien d'huile une graine produit :
0,05 gramme * 0,25 millilitres par gramme = 0,0125 millilitres par graine

Maintenant, calculons combien de graines nous devons planter pour obtenir 1 décilitre (100 millilitres) d'huile, sachant que 6 cuillères à soupe d'huile sont environ égales à 1 décilitre :

1 décilitre / 0,0125 millilitres par graine = 100 millilitres / 0,0125 millilitres par graine = 8000 graines

Nous avons besoin de 8000 graines pour produire 1 décilitre d'huile.

Ensuite, déterminons combien de tournesols nous devons planter pour produire l'huile nécessaire à la sauce salade. Puisque Lénaïc utilise 3 cuillères à soupe de sauce pour 6 personnes, et 6 cuillères à soupe équivalent à 1 décilitre, nous avons besoin de la moitié d'un décilitre pour 3 cuillères à soupe :

La moitié d'un décilitre est de 50 millilitres, donc nous effectuons le même calcul :

50 millilitres / 0,0125 millilitres par graine = 4000 graines

Puisqu'un tournesol produit environ 1000 graines :

4000 graines / 1000 graines par tournesol = 4 tournesols

Donc, Lénaïc devrait planter 4 tournesols pour produire suffisamment d'huile pour sa sauce Salade pour 6 personnes.

\boxed{4 \text{ tournesols}}

Frequently asked questions (FAQs)
Question: Find the value of the sine of an angle α using a Trigonometric table. (
+
What is the derivative of sin(x) + cos(x) + tan(x) + sec(x) + csc(x) + cot(x) ?
+
Math question: "Graph the inequality y > 2x - 3. Show the solution on a coordinate plane."
+
New questions in Mathematics
A circle with a 12-inch diameter is folded in half and then folded in half again. What is the area of the resulting shape?
Write 32/25 as a percent
Evaluate limx→∞tan−1(x) using that y=tan−1(x) exactly when x=tan(y) . (Hint: Both tan and tan−1 are continuous!)
The Lenovo company manufactures laptop computers, it is known that for every 60 laptops produced, 54 go on the market with the highest quality standards. If a sample of 15 laptops is taken, calculate the probability that: Exactly 2 are not of high quality
3x+2/2x-1 + 3+x/2x-1 - 3x-2/2x-1
The data set (75, 85, 58, 72, 70, 75) is a random sample from the normal distribution No(µ, σ). Determine a 95% two-sided confidence interval for the mean µ .
224 × (6÷8)
Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?
A company that manufactures personal hygiene items purchases machinery for $220,000 that is considered to last 7 years; it is estimated that at the end of the period it will have a salvage value of $1000. Find: to. The depreciation rate. b. The book value at the end of the sixth year.
-3(-4x+5)=-6(7x-8)+9-10x
Log5 625
It is known that the content of milk that is actually in a bag distributes normally with an average of 900 grams and variance 25 square grams. Suppose that the cost in pesos of a bag of milk is given by 𝐶(𝑥) = { 3800 𝑠𝑖 𝑥 ≤ 890 4500 𝑠𝑖 𝑥 > 890 Find the expected cost.
Let v be the set of all ordered pairs of real numbers and consider the scalar addition and multiplication operations defined by: u+v=(x,y)+(s,t)=(x+s+1,y+t -two) au=a.(x,y)=(ax+a-1,ay-2a+2) It is known that this set with the operations defined above is a vector space. A) calculate u+v is au for u=(-2,3),v=(1,-2) and a=2 B) show that (0,0) #0 Suggestion find a vector W such that u+w=u C) who is the vector -u D) show that axiom A4 holds:-u+u=0
We have received our p&l statement back from accounts. The board has asked for an innovation hub. What items should we prioritise reviewing to decide if we can afford an innovation hub?
find missing measure for triangle area = 48 m square base = 10m heaighy = ? m
A house located within the city limits has a current market value of $325,000 according to a recent appraisal. The assessed value from the last county wide tax valuation is $272,475. The tax rate is $0.36 per hundred for the county and $0.72 per hundred for the city. What is the total annual property tax liability on the property? $2340 $3510 $1962 $2943
We plan to test whether the mean mRNA expression level differs between two strains of yeast, for each of 8,000 genes. We will measure the expression levels of each gene, in n samples of strain 1 and m samples of strain 2. We plan to compute a P-value for each gene, using an unpaired two-sample t-test for each gene (the particular type of test does not matter). a) What are the null hypotheses in these tests (in words)? [2] b) If, in fact, the two strains are identical, how many of these tests do we expect to produce a P-value exceeding 1/4? [2]
Calculate the area of the parallelogram with adjacent vertices (1,4, −2), (−3,1,6) 𝑦 (1, −2,3)
94 divided by 8.75
A grain silo has a height of 8.8m with a 11.4m diameter. If it is filled 0.5% of it's volume, how much grain (m^3) is stored in the silo? (0 decimal places)