Question

we collect around 1000 seeds per sunflower. A sunflower seed weighs about 0.05 grams. approximately 25 liters of oil are extracted from 100 kilograms of sunflower seeds. Lénaïc uses 3 tablespoons of his salad sauce (for 6 people). The content of 6 tablespoons of oil is approximately equal to 1 deciliter. How many sunflowers do you need to plant to produce the oil needed to make salad dressing? can I have the explanation with the answer?

118

likes
589 views

Answer to a math question we collect around 1000 seeds per sunflower. A sunflower seed weighs about 0.05 grams. approximately 25 liters of oil are extracted from 100 kilograms of sunflower seeds. Lénaïc uses 3 tablespoons of his salad sauce (for 6 people). The content of 6 tablespoons of oil is approximately equal to 1 deciliter. How many sunflowers do you need to plant to produce the oil needed to make salad dressing? can I have the explanation with the answer?

Expert avatar
Hester
4.8
116 Answers
Tout d'abord, calculons combien d'huile une graine de tournesol produit.

Si 100 kilogrammes de graines de tournesol produisent 25 litres d'huile, nous pouvons déterminer combien d'huile une seule graine produit :

1. Convertissons 100 kilogrammes en grammes, puisque nous savons que le poids d'une seule graine est en grammes :
100 kilogrammes = 100,000 grammes

2. Ensuite, divisons le volume total d'huile par le poids total des graines pour obtenir le rendement en huile par gramme de graines :
25 litres (25,000 millilitres) / 100,000 grammes = 0,25 millilitres par gramme

3. Puisque nous savons qu'une graine de tournesol pèse environ 0,05 gramme, calculons combien d'huile une graine produit :
0,05 gramme * 0,25 millilitres par gramme = 0,0125 millilitres par graine

Maintenant, calculons combien de graines nous devons planter pour obtenir 1 décilitre (100 millilitres) d'huile, sachant que 6 cuillères à soupe d'huile sont environ égales à 1 décilitre :

1 décilitre / 0,0125 millilitres par graine = 100 millilitres / 0,0125 millilitres par graine = 8000 graines

Nous avons besoin de 8000 graines pour produire 1 décilitre d'huile.

Ensuite, déterminons combien de tournesols nous devons planter pour produire l'huile nécessaire à la sauce salade. Puisque Lénaïc utilise 3 cuillères à soupe de sauce pour 6 personnes, et 6 cuillères à soupe équivalent à 1 décilitre, nous avons besoin de la moitié d'un décilitre pour 3 cuillères à soupe :

La moitié d'un décilitre est de 50 millilitres, donc nous effectuons le même calcul :

50 millilitres / 0,0125 millilitres par graine = 4000 graines

Puisqu'un tournesol produit environ 1000 graines :

4000 graines / 1000 graines par tournesol = 4 tournesols

Donc, Lénaïc devrait planter 4 tournesols pour produire suffisamment d'huile pour sa sauce Salade pour 6 personnes.

\boxed{4 \text{ tournesols}}

Frequently asked questions (FAQs)
Question: Evaluate log base 5 of (20) + log base 5 of (125) - log base 5 of (8), using logarithmic properties.
+
Question: What is the sum of the mixed numbers 3 1/2 and 2 3/4 when factored by the real numbers 4 and 5?
+
What is the median of a set of 7 numbers if the first 4 numbers are 2, 5, 6, and 8, and the last 3 numbers are 10, 12, and 14?
+
New questions in Mathematics
Let 𝑢 = 𝑓(𝑥, 𝑦) = (𝑒^𝑥)𝑠𝑒𝑛(3𝑦). Check if 9((𝜕^2) u / 𝜕(𝑥^2)) +((𝜕^2) 𝑢 / 𝜕(𝑦^2)) = 0
The time it takes for a person to travel 300 m is 15 minutes. What is their speed in meters per second?
10.Silvana must knit a blanket in 9 days. Knitting 8 hours a day, at the end of the fifth day, only 2/5 of the blanket was done. To be able to finish on time, how many hours will Silvana have to knit per day?
How many percent is one second out a 24 hour?
what is 3% of 105?
1 plus 1
(2x+5)^3+(x-3)(x+3)
4. Show that if n is any integer, then n^2 3n 5 is an odd integer
2x+4x=
find f(x) for f'(x)=3x+7
Two business partners have a bank balance of $17,942.00. After the first year their interest brings their balance to $18,928.91. What rate of interest is earned?
4+168×10³×d1+36×10³×d2=-12 -10+36×10³×d1+72×10³×d2=0
Fill in the P(X-x) values to give a legitimate probability distribution for the discrete random variable X, whose possible values are -5 ,3 , 4, 5 , and 6.
Write an expression using compatible numbers that can be used to estimate the quotient 629\86
Find sup { x∈R, x²+3<4x }. Justify the answer
X^X =49 X=?
a) 6x − 5 > x + 20
Solve the following 9x - 9 - 6x = 5 + 8x - 9
Sodium 38.15 38.78 38.5 38.65 38.79 38.89 38.57 38.59 38.59 38.8 38.63 38.43 38.56 38.46 38.79 38.42 38.74 39.12 38.5 38.42 38.57 38.37 38.71 38.71 38.4 38.56 38.39 38.34 39.04 38.8 A supplier of bottled mineral water claims that his supply of water has an average sodium content of 36.6 mg/L. The boxplot below is of the sodium contents levels taken from a random sample of 30 bottles. With this data investigate the claim using SPSS to apply the appropriate test. Download the data and transfer it into SPSS. Check that your data transfer has been successful by obtaining the Std. Error of the mean for your data which should appear in SPSS output as 0.03900.. If you do not have this exact value, then you may have not transferred your data from the Excel file to SPSS correctly. Do not continue with the test until your value agrees as otherwise you may not have correct answers. Unless otherwise directed you should report all numeric values to the accuracy displayed in the SPSS output that is supplied when your data has been transferred correctly. In the following questions, all statistical tests should be carried out at the 0.05 significance level. Sample mean and median Complete the following concerning the mean and median of the data. mean =  mg/L 95% CI:  to  mg/L Based upon the 95% confidence interval, is it plausible that the average sodium content is 36.9 mg/L?      median:  mg/L The median value is      36.9 mg/L. Skewness Complete the following concerning the skewness of the data. Skewness statistic =        Std. Error =  The absolute value of the skewness statistic     less than 2 x Std. Error Therefore the data can be considered to come from a population that is      . Normality test Complete the following summary concerning the formal testing of the normality of the data. H0: The data come from a population that     normal H1: The data come from a population that     normal Application of the Shapiro-Wilk test indicated that the normality assumption     reasonable for sodium content (S-W(  )=  , p=   ). Main test Using the guidelines you have been taught that consider sample size, skewness and normality, choose and report the appropriate main test from the following ( Appropriate ONE ) You have selected that you wish to report the one-sample t-test. H0: The mean sodium content     equal to 36.9 mg/L H1: The mean sodium content     equal to 36.9 mg/L Application of the one-sample t-test indicated that the mean is      36.9 mg/L (t(  ) =  , p =   ). You have selected that you wish to report the Wilcoxon signed rank test. H0: The median sodium content     equal to 36.9 mg/L H1: The median sodium content     equal to 36.9 mg/L Application of the Wilcoxon signed rank test indicated that the median is      36.9 mg/L (z =  , N =  , p =   ).
How many digits are there in Hindu-Arabic form of numeral 26 × 1011