value for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field>. \u003Cbr />\n\u003Cbr />\n2. Using the standard normal distribution table or a calculator, we find that the CDF value for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field> is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>0.0222\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n3. Since this value represents the area to the left of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field>, the area to the right is:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1 - 0.0222 = 0.9778\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore, the area under the standard normal distribution curve to the right of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>0.9778\u003C/math-field>\u003C/math-field>.",878,176,"find-the-area-under-the-standard-normal-distribution-to-the-right-of-z-2-01",{"id":44,"category":36,"text_question":45,"photo_question":38,"text_answer":46,"step_text_answer":8,"step_photo_answer":8,"views":47,"likes":48,"slug":49},538092,"2²","The expression 22 represents 2 raised to the power of 2, which is 2times2=4. Therefore, the answer is 4.",898,180,"2",{"id":51,"category":36,"text_question":52,"photo_question":38,"text_answer":53,"step_text_answer":8,"step_photo_answer":8,"views":54,"likes":55,"slug":56},538090,"The ratio of Adam’s weight to John’s weight is 6:5. If Adam weighs 48 KG, find John’s weight.","Let Adam's weight be represented as \\( A \\) and John's weight as \\( J \\). \u003Cbr />\n\u003Cbr />\nGiven the ratio is 6:5, we have:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{A}{J} = \\frac{6}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nWe know Adam's weight \\( A = 48 \\, \\text{KG} \\).\u003Cbr />\n\u003Cbr />\nSo substitute \\( A \\) in the ratio:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{48}{J} = \\frac{6}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nBy cross-multiplying:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 6J = 5 \\times 48 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 6J = 240 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nNow, solve for \\( J \\):\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> J = \\frac{240}{6} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> J = 40 \\, \\text{KG} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore, John's weight is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>40 \\text{ KG}\u003C/math-field>\u003C/math-field>.",591,118,"the-ratio-of-adam-s-weight-to-john-s-weight-is-6-5-if-adam-weighs-48-kg-find-john-s-weight",{"id":58,"category":36,"text_question":59,"photo_question":38,"text_answer":60,"step_text_answer":8,"step_photo_answer":8,"views":61,"likes":62,"slug":63},538089,"David cuts a rope 60 m long into two pieces in the ratio 2:3. What is the length of the shorter piece of rope?","1. Let the lengths of the two pieces of rope be represented as $2x$ and $3x$, since they are in the ratio 2:3.\u003Cbr />\n \u003Cbr />\n2. According to the problem, the sum of the lengths of the two pieces is 60 m, so:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x + 3x = 60 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Combine like terms:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 5x = 60 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Solve for $x$:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{60}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 12 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. The length of the shorter piece of rope is $2x$, so:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 2 \\times 12 \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 24 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Therefore, the length of the shorter piece of rope is:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 24 \\, \\text{m} \u003C/math-field>\u003C/math-field>",1166,233,"david-cuts-a-rope-60-m-long-into-two-pieces-in-the-ratio-2-3-what-is-the-length-of-the-shorter-piece-of-rope",{"id":65,"category":36,"text_question":66,"photo_question":38,"text_answer":67,"step_text_answer":8,"step_photo_answer":8,"views":68,"likes":69,"slug":70},538088,"Breanne made pineapple drinks by mixing pineapple syrup and water in the ratio 2:7. If she used 4 L of pineapple syrup, how much water did she use?","1. The ratio of pineapple syrup to water is 2:7. This means for every 2 parts of syrup, there are 7 parts of water.\u003Cbr />\n2. Breanne used 4 L of pineapple syrup. Set up the proportion:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{2}{7} = \\frac{4}{x} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n where \\( x \\) is the amount of water used.\u003Cbr />\n\u003Cbr />\n3. Cross-multiply to solve for \\( x \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 7 \\cdot 4 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 28 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Solve for \\( x \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{28}{2} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Calculate:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 14 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Therefore, Breanne used 14 L of water. \u003Cbr />\n\u003Cbr />\nAnswer: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>14 \\text{ L}\u003C/math-field>\u003C/math-field>",783,157,"breanne-made-pineapple-drinks-by-mixing-pineapple-syrup-and-water-in-the-ratio-2-7-if-she-used-4-l-of-pineapple-syrup-how-much-water-did-she-use",{"id":72,"category":36,"text_question":73,"photo_question":38,"text_answer":74,"step_text_answer":8,"step_photo_answer":8,"views":75,"likes":76,"slug":77},538087,"y=-2(4)^x+1 +1 describe transformation","Solution:\u003Cbr />\n1. Given function:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = -2(4)^{x+1} + 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Base function:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = 4^x\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Identify transformations step-by-step:\u003Cbr />\n - **Translation horizontally**: The function has \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(x+1)\u003C/math-field>\u003C/math-field> as the exponent instead of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>. This indicates a horizontal shift to the left by 1 unit.\u003Cbr />\n - **Vertical stretch and reflection**: The coefficient before \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4\u003C/math-field>\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - **Vertical stretch**: The factor \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2\u003C/math-field>\u003C/math-field> indicates that the function is stretched vertically by a factor of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - **Reflection**: The negative sign indicates a reflection across the x-axis.\u003Cbr />\n - **Vertical translation**: The \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>+1\u003C/math-field>\u003C/math-field> outside the function indicates a vertical shift upwards by 1 unit.\u003Cbr />\n\u003Cbr />\n4. Describe the complete transformation:\u003Cbr />\n - The function \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = 4^x\u003C/math-field>\u003C/math-field> undergoes the following transformations: a horizontal shift to the left by 1 unit, a vertical stretch by a factor of 2, reflection across the x-axis, and finally a vertical shift upwards by 1 unit.",1255,251,"y-2-4-x-1-1-describe-transformation",{"id":79,"category":36,"text_question":80,"photo_question":38,"text_answer":81,"step_text_answer":8,"step_photo_answer":8,"views":82,"likes":83,"slug":84},538086,"Add the polynomials g(x)=x3-2x2+3x-1+4x2-x+2","Solution: \u003Cbr />\n1. Write down the given polynomials:\u003Cbr />\n- First polynomial: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>g(x) = x^3 - 2x^2 + 3x - 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Second polynomial: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x^2 - x + 2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Align and add the polynomials term by term:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>g(x) = x^3 - 2x^2 + 3x - 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x^2 - x + 2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Add the corresponding like terms:\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^2\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2x^2 + 4x^2 = 2x^2\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x - x = 2x\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For constant terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-1 + 2 = 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. The resulting polynomial after addition is:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3 + 2x^2 + 2x + 1\u003C/math-field>\u003C/math-field>",739,148,"add-the-polynomials-g-x-x3-2x2-3x-1-4x2-x-2",{"id":86,"category":36,"text_question":87,"photo_question":38,"text_answer":88,"step_text_answer":8,"step_photo_answer":8,"views":89,"likes":90,"slug":91},538085,"R=3m. Calculate the volume of the sphere. Round to the nearest tenth if necessary","1. The formula for the volume of a sphere is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi R^3 \u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. Substitute the given radius \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> R = 3 \\, \\text{m} \u003C/math-field>\u003C/math-field> into the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi (3)^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 3^3 = 27 \u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Thus, the volume becomes:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi \\times 27 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify the expression:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4 \\times 27}{3} \\pi = 36 \\pi \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Use the approximation \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\pi \\approx 3.1416 \u003C/math-field>\u003C/math-field> :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 36 \\times 3.1416 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. Calculate the approximate volume:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V\\approx113.0973\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>8. Round to the nearest tenth:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 113.1 \\, \\text{m}^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Therefore, the volume of the sphere is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 113.1 \\, \\text{m}^3 \u003C/math-field>\u003C/math-field> .",1203,241,"r-3m-calculate-the-volume-of-the-sphere-round-to-the-nearest-tenth-if-necessary",{"id":93,"category":36,"text_question":94,"photo_question":38,"text_answer":95,"step_text_answer":8,"step_photo_answer":8,"views":96,"likes":97,"slug":98},538084,"Width of 12 in. Calculate the volume of the sphere. Round to the nearest tenth if necessary","1. Identify the radius of the sphere. Given the width is 12 inches, the diameter is 12 inches. Therefore, the radius is half of the diameter:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> r = \\frac{12}{2} = 6 \\, \\text{in} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Use the formula for the volume of a sphere:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi r^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute the radius into the formula:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi (6)^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Calculate:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi \\times 216 = \\frac{864}{3} \\pi = 288 \\pi \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Approximate using \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\pi \\approx 3.1416 \u003C/math-field>\u003C/math-field>:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 288 \\times 3.1416 = 904.8 \\, \\text{in}^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. The volume of the sphere, rounded to the nearest tenth, is approximately:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 904.8 \\, \\text{in}^3 \u003C/math-field>\u003C/math-field>",278,56,"width-of-12-in-calculate-the-volume-of-the-sphere-round-to-the-nearest-tenth-if-necessary",{"id":100,"category":36,"text_question":101,"photo_question":38,"text_answer":102,"step_text_answer":8,"step_photo_answer":8,"views":103,"likes":104,"slug":105},538083,"Calculate the volume (to the nearest tenth of a cubic centimeter) of a golf ball whose diameter is 4.267cm","1. The formula for the volume of a sphere is given by \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi r^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. The diameter of the golf ball is given as 4.267 cm, so the radius is half of that: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>r = \\frac{4.267}{2} = 2.1335 \\, \\text{cm}\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>3. Substitute the radius into the volume formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi (2.1335)^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Calculate the cube of the radius: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(2.1335)^3 = 9.707432537375\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>5. Substitute this back into the formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V=\\frac{4}{3}\\pi\\times9.707432537375\\approx40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>6. The volume of the golf ball is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .",1440,288,"calculate-the-volume-to-the-nearest-tenth-of-a-cubic-centimeter-of-a-golf-ball-whose-diameter-is-4-267cm",{"id":107,"category":36,"text_question":108,"photo_question":38,"text_answer":109,"step_text_answer":8,"step_photo_answer":8,"views":110,"likes":111,"slug":112},538082,"Find the length of each base edge (to the nearest tenth of a meter) of the 24m tall glass square pyramids of the Muttart Conservatory in Alberta, Canada, if each contains 5280m^3 of space","1. Volume V of a square pyramid is given by the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{1}{3} B h\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>where B is the area of the base and h is the height of the pyramid.\u003Cbr>\u003Cbr>2. Given that the height h = 24 m and the volume V = 5280 m^3.\u003Cbr>\u003Cbr>3. The base is square, so if the side length of the base is s, then:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>B = s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Substituting into the volume formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = \\frac{1}{3} s^2 \\times 24\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify and solve for s^2:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = 8 s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s^2 = \\frac{5280}{8} = 660\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Solve for s:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{660} \\approx 25.7\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. To find the length of each base edge to the nearest tenth of a meter, compute:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s \\approx 25.7 \\, \\text{m}\u003C/math-field>\u003C/math-field>",418,84,"find-the-length-of-each-base-edge-to-the-nearest-tenth-of-a-meter-of-the-24m-tall-glass-square-pyramids-of-the-muttart-conservatory-in-alberta-canada-if-each-contains-5280m-3-of-space",{"id":114,"category":36,"text_question":115,"photo_question":38,"text_answer":116,"step_text_answer":8,"step_photo_answer":8,"views":117,"likes":118,"slug":119},538081,"An observer is 150 meters away\n distance of a hot air balloon online\n straight line at ground level. From your position,\n measures an elevation angle of 40° up to\n the base of the balloon. At what height is\n find the hot air balloon?","Solution:\u003Cbr />\n1. Dado:\u003Cbr />\n- Distancia horizontal desde el observador hasta la base del globo: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>d = 150 \\ m\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Ángulo de elevación: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\theta = 40^{\\circ}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Usamos la función tangente para encontrar la altura \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h\u003C/math-field>\u003C/math-field> del globo aerostático. La tangente de un ángulo en un triángulo rectángulo es la razón entre la altura y la distancia horizontal:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(\\theta) = \\frac{h}{d}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Sustituimos los valores conocidos en la ecuación:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(40^{\\circ}) = \\frac{h}{150}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Resolvemos para \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h = 150 \\times \\tan(40^{\\circ})\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Calculamos el valor numérico:\u003Cbr />\n* Usando una calculadora, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(40^{\\circ}) \\approx 0.8391\u003C/math-field>\u003C/math-field>\u003Cbr />\n* Entonces: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h \\approx 150 \\times 0.8391 = 125.865 \\ m\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nLa altura del globo aerostático es aproximadamente \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>125.865 \\ m\u003C/math-field>\u003C/math-field>.",667,133,"an-observer-is-150-meters-away-distance-of-a-hot-air-balloon-online-straight-line-at-ground-level-from-your-position-measures-an-elevation-angle-of-40-up-to-the-base-of-the-balloon-at-what-hei",{"id":121,"category":36,"text_question":122,"photo_question":38,"text_answer":123,"step_text_answer":8,"step_photo_answer":8,"views":124,"likes":125,"slug":126},538080,"A plane ticket has gone up 18%, now costing $4,720. How much did it cost before the increase?","\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\text{Solution:}\u003C/math-field>\u003C/math-field>\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field> be the original price of the plane ticket.\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field> increased by 18% means the new price is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P + 0.18P = 1.18P\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n2. Set up the equation based on the problem statement:\u003Cbr />\n- The new price \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>= 4,720\u003C/math-field>\u003C/math-field>.\u003Cbr />\n- Therefore, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1.18P = 4,720\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n3. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field>:\u003Cbr />\n- Divide both sides by 1.18 to isolate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field>.\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P = \\frac{4,720}{1.18}\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n4. Calculate:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P \\approx 4,000\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\text{Answer:}\u003C/math-field>\u003C/math-field>\u003Cbr />\n- The original price of the plane ticket was approximately USD 4,000.",726,145,"a-plane-ticket-has-gone-up-18-now-costing-4-720-how-much-did-it-cost-before-the-increase",{"id":128,"category":36,"text_question":129,"photo_question":38,"text_answer":130,"step_text_answer":8,"step_photo_answer":8,"views":131,"likes":132,"slug":133},538078,"H=8mm, r=2mm. Calculate the volume of the cone round to the nearest tenth if necessary","1. Use the formula for the volume of a cone: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi r^2 H \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Substitute the given values: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> H = 8 \\, \\text{mm}, \\, r = 2 \\, \\text{mm} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (2)^2 (8) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate \\( (2)^2 \\):\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> (2)^2 = 4 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Substitute and compute:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (4)(8) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (32) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Calculate the product: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{32}{3} \\pi \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Calculate:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V\\approx33.51032\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. Round to the nearest tenth:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 33.5 \\, \\text{mm}^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>This is the answer: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 33.5 \\, \\text{mm}^3 \u003C/math-field>\u003C/math-field>",631,126,"h-8mm-r-2mm-calculate-the-volume-of-the-cone-round-to-the-nearest-tenth-if-necessary",{"id":135,"category":36,"text_question":136,"photo_question":38,"text_answer":137,"step_text_answer":8,"step_photo_answer":8,"views":138,"likes":139,"slug":140},538076,"Dividing 218 or 172 by the natural number n, you get a remainder of 11. Dividing n by 11, you get a remainder equal to:","** \u003Cbr>\u003Cbr>1. Since dividing 218 by n gives a remainder of 11, 218 - 11 = 207 is divisible by n : \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>207\\equiv0\\pmod{n}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Similarly, dividing 172 by n gives a remainder of 11, so 172 - 11 = 161 is divisible by n :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>161\\equiv0\\pmod{n}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. n must be a common divisor of 207 and 161. Find the greatest common divisor of 207 and 161:\u003Cbr>\u003Cbr>- First, find the difference: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 207 - 161 = 46 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Find the prime factorization of 46:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 46 = 2 \\times 23 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Prime factorization of 161:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 161 = 7 \\times 23 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Common factor is 23.\u003Cbr>\u003Cbr>4. Therefore, the possible value of n should be 23 (since other divisions have factors that don't divide both). Now, divide n = 23 by 11:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 23 \\div 11 = 2 \\, \\text{R} \\, 1 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Thus, the remainder of dividing n by 11 is 1\u003Cbr>\u003Cbr>",1233,247,"dividing-218-or-172-by-the-natural-number-n-you-get-a-remainder-of-11-dividing-n-by-11-you-get-a-remainder-equal-to",{"id":142,"category":36,"text_question":143,"photo_question":38,"text_answer":144,"step_text_answer":8,"step_photo_answer":8,"views":145,"likes":146,"slug":147},538074,"R=24 inches\nCalculate the surface area of the sphere","1. The formula to calculate the surface area of a sphere is given by: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = 4 \\pi R^2 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Substitute the value of the radius \\( R = 24 \\) inches into the formula: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = 4 \\pi (24)^2 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate the square of the radius:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> (24)^2 = 576 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Multiply by 4:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 4 \\times 576 = 2304 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. The surface area is:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>A=2304\\pi=7238.23\u003C/math-field>\u003C/math-field> square inches \u003Cbr>\u003Cbr>Therefore, the surface area of the sphere is 7238.23 square inches.",923,185,"r-24-inches-calculate-the-surface-area-of-the-sphere",{"id":149,"category":36,"text_question":150,"photo_question":38,"text_answer":151,"step_text_answer":8,"step_photo_answer":8,"views":152,"likes":153,"slug":154},538073,"Andrés's age is three times Quan's.\n plus wins and both ages add up to 69 years. Nillar\n both ages.","Solution:\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field> be the age of Andrés.\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field> be the age of Quan.\u003Cbr />\n\u003Cbr />\n2. Set up the equations based on the problem:\u003Cbr />\n- Andrés is three times as old as Quan: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field>\u003Cbr />\n- The sum of their ages is 69: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a + q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field> into the second equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3q + q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify the equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q = \\frac{69}{4}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Compute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q = 17.25\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Find \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field> using the equation \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3 \\times 17.25\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n8. Compute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 51.75\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore:\u003Cbr />\n- Quan is approximately 17.25 years old.\u003Cbr />\n- Andrés is approximately 51.75 years old.",553,111,"andres-s-age-is-three-times-quan-s-plus-wins-and-both-ages-add-up-to-69-years-nillar-both-ages",{"id":156,"category":36,"text_question":157,"photo_question":38,"text_answer":158,"step_text_answer":8,"step_photo_answer":8,"views":159,"likes":160,"slug":161},538072,"Andrew's age is three times John's plus nine years, and their ages add up to 69 years. Find both ages.","Solution:\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> be Juan's age.\u003Cbr />\n- Andrés' age is then \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n2. Set up the equation for the total age:\u003Cbr />\n- Juan's age \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> plus Andrés' age \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9\u003C/math-field>\u003C/math-field> equals 69.\u003Cbr />\n\u003Cbr />\n3. Equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + (3x + 9) = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify and solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + 3x + 9 = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x + 9 = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x = 60\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 15\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Find Andrés' age:\u003Cbr />\n- Substitute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 15\u003C/math-field>\u003C/math-field> into Andrés' age expression:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9 = 3(15) + 9 = 45 + 9 = 54\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Therefore, the ages are:\u003Cbr />\n- Juan: 15 years\u003Cbr />\n- Andrés: 54 years",531,106,"andrew-s-age-is-three-times-john-s-plus-nine-years-and-their-ages-add-up-to-69-years-find-both-ages",{"id":163,"category":36,"text_question":164,"photo_question":38,"text_answer":165,"step_text_answer":8,"step_photo_answer":8,"views":166,"likes":167,"slug":168},538071,"Solve the following linear equations:\n 1) 5x-3= 3X+7","Solution:\u003Cbr />\n1. Given Equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5x - 3 = 3x + 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Subtract \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x\u003C/math-field>\u003C/math-field> from both sides to simplify:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5x - 3x - 3 = 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Combine like terms:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x - 3 = 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Add 3 to both sides to isolate the term with the variable:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x = 10\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Divide both sides by 2 to solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 5\u003C/math-field>\u003C/math-field>",1382,276,"solve-the-following-linear-equations-1-5x-3-3x-7",{"id":170,"category":36,"text_question":171,"photo_question":38,"text_answer":172,"step_text_answer":8,"step_photo_answer":8,"views":173,"likes":174,"slug":175},538070,"Solve the following linear equations:\n\n 2) 2x+4- 5x = x+8-5×","1. Start with the original equation: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x + 4 - 5x = x + 8 - 5x\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Combine like terms on both sides:\u003Cbr>\u003Cbr>- Left side: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x - 5x + 4 = -3x + 4\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Right side: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x - 5x + 8 = -4x + 8\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>So the equation becomes:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-3x + 4 = -4x + 8\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Add \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x\u003C/math-field>\u003C/math-field> to both sides to get:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + 4 = 8\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Subtract \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4\u003C/math-field>\u003C/math-field> from both sides:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 4\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>",674,135,"solve-the-following-linear-equations-2-2x-4-5x-x-8-5",{"first":6,"last":177,"prev":8,"next":10},188,{"current_page":6,"from":6,"last_page":177,"links":179,"path":212,"per_page":213,"to":213,"total":214},[180,183,185,187,189,191,193,196,199,202,205,208,210],{"url":6,"label":181,"active":182},"1",true,{"url":10,"label":49,"active":184},false,{"url":13,"label":186,"active":184},"3",{"url":16,"label":188,"active":184},"4",{"url":19,"label":190,"active":184},"5",{"url":22,"label":192,"active":184},"6",{"url":194,"label":195,"active":184},7,"7",{"url":197,"label":198,"active":184},8,"8",{"url":200,"label":201,"active":184},9,"9",{"url":203,"label":204,"active":184},10,"10",{"url":206,"label":207,"active":184},187,"187",{"url":177,"label":209,"active":184},"188",{"url":10,"label":211,"active":184},"Next »","https://api.math-master.org/api/question",20,3742,{"data":216},{"id":217,"category":36,"slug":218,"text_question":219,"photo_question":8,"text_answer":220,"step_text_answer":8,"step_photo_answer":8,"views":221,"likes":222,"expert":223},536824,"1-consider-a-class-with-a-normal-distribution-of-grades-of-5-5-the-standard-deviation-is-0-5-calculate-the-percentage-of-students-who-obtained-a-grade-a-between-5-and-6-b-above-6-c-below-5","1) Consider a class with a normal distribution of grades of 5.5. The standard deviation is 0.5. Calculate the percentage of students who obtained a grade: A) between 5 and 6; B) above 6; C) below 5.","A) between 5 and 6 \u003Cbr />\n1. Convert grades to z-scores: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> Z = \\frac{X - \\mu}{\\sigma} \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> Z_1 = \\frac{5 - 5.5}{0.5} = -1 \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> Z_2 = \\frac{6 - 5.5}{0.5} = 1 \u003C/math-field>\u003C/math-field>\u003Cbr />\n2. Calculate cumulative probabilities: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> P(-1 \\leq Z \\leq 1) = P(Z \\leq 1) - P(Z \\leq -1) \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 0.8413 - 0.1587 = 0.6826 \u003C/math-field>\u003C/math-field>\u003Cbr />\n3. Convert to percentage: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 68.26\\% \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nB) above 6 \u003Cbr />\n1. Convert grade to z-score: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> Z = \\frac{X - \\mu}{\\sigma} \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> Z = \\frac{6 - 5.5}{0.5} = 1 \u003C/math-field>\u003C/math-field>\u003Cbr />\n2. Calculate cumulative probability: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> P(Z > 1) = 1 - P(Z \\leq 1) \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 1 - 0.8413 = 0.1587 \u003C/math-field>\u003C/math-field>\u003Cbr />\n3. Convert to percentage: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 15.87\\% \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nC) below 5 \u003Cbr />\n1. Convert grade to z-score: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> Z = \\frac{X - \\mu}{\\sigma} \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> Z = \\frac{5 - 5.5}{0.5} = -1 \u003C/math-field>\u003C/math-field>\u003Cbr />\n2. Use cumulative probability: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> P(Z \u003C -1) = 0.1587 \u003C/math-field>\u003C/math-field>\u003Cbr />\n3. Convert to percentage: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 15.87\\% \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nAnswer: \u003Cbr />\nA) 68.26\\% \u003Cbr />\nB) 15.87\\% \u003Cbr />\nC) 15.87\\%",634,127,{"id":224,"name":225,"photo":226,"biography":227,"created_at":8,"updated_at":8,"rating":228,"total_answer":229},22,"Hank","https://api.math-master.org/img/experts/22/22.webp","When I was in elementary and middle school, I did not feel the importance and beauty of mathematics, but when I joined the secondary stage, I began to feel the beauty and importance of mathematics, and I excelled in mathematics. I joined the College of Education, Department of Mathematics, and now I am a mathematics teacher.\nThen after that, I got a master's degree and a doctorate in curricula and methods of teaching mathematics.",4.8,100,{"data":231},{"questions":232},[233,237,241,245,249,252,255,259,263,267,271,275,279,283,287,291,295,299,303,307],{"id":234,"category":36,"text_question":235,"slug":236},532000,"A sample is chosen from a population with y = 46, and a treatment is then administered to the sample. After treatment, the\nsample mean is M = 47 with a sample variance of s2 = 16. Based on this information, what is the value of Cohen's d?","a-sample-is-chosen-from-a-population-with-y-46-and-a-treatment-is-then-administered-to-the-sample-after-treatment-the-sample-mean-is-m-47-with-a-sample-variance-of-s2-16-based-on-this-inform",{"id":238,"category":36,"text_question":239,"slug":240},532090,"String x = 5\r\nInt y=2\r\nSystem.out.println(x+y)","string-x-5-int-y-2-system-out-println-x-y",{"id":242,"category":36,"text_question":243,"slug":244},532299,"³√12 x ⁶√96","12-x-96",{"id":246,"category":36,"text_question":247,"slug":248},533906,"If L = (-2, -5) is reflected across y= -4 , what are the coordinates of L?","if-l-2-5-is-reflected-across-y-4-what-are-the-coordinates-of-l",{"id":250,"category":36,"text_question":251,"slug":251},533938,"132133333-33",{"id":253,"category":36,"text_question":254,"slug":254},533969,"7273736363-8",{"id":256,"category":36,"text_question":257,"slug":258},534003,"The main cost of a 5 pound bag of shrimp is $47 with a variance of 36 if a sample of 43 bags of shrimp is randomly selected, what is the probability that the sample mean with differ from the true mean by less than $1.4","the-main-cost-of-a-5-pound-bag-of-shrimp-is-47-with-a-variance-of-36-if-a-sample-of-43-bags-of-shrimp-is-randomly-selected-what-is-the-probability-that-the-sample-mean-with-differ-from-the-true-mean",{"id":260,"category":36,"text_question":261,"slug":262},534081,"Mrs. Emily saved RM10000 in a bank. At the end of the eighth year, the amount of money accumulated amounted to RM19992.71. If the bank pays an annual interest of x% for a year compounded every 6 months. Calculate the value of x.","mrs-emily-saved-rm10000-in-a-bank-at-the-end-of-the-eighth-year-the-amount-of-money-accumulated-amounted-to-rm19992-71-if-the-bank-pays-an-annual-interest-of-x-for-a-year-compounded-every-6-month",{"id":264,"category":36,"text_question":265,"slug":266},534112,"What is the total tolerance for a dimension from 1.996\" to 2.026*?","what-is-the-total-tolerance-for-a-dimension-from-1-996-to-2-026",{"id":268,"category":36,"text_question":269,"slug":270},534141,"v\r\nIs the following statement a biconditional?\r\nIf Shannon is watching a Tigers game, then it is on television.","v-is-the-following-statement-a-biconditional-if-shannon-is-watching-a-tigers-game-then-it-is-on-television",{"id":272,"category":36,"text_question":273,"slug":274},534149,"Task 1 angel has 3 quarters 3/8 of a tank of gasoline and Miguel 7/8, who has more gasoline? number line on number line","task-1-angel-has-3-quarters-3-8-of-a-tank-of-gasoline-and-miguel-7-8-who-has-more-gasoline-number-line-on-number-line",{"id":276,"category":36,"text_question":277,"slug":278},534252,"A box of numbered pens has 12 red, 12 blue, 12 green and 12 yellow pens. The pens for each colour are numbered from 1 to 12. There is a unique number on each pen, so no pen is exactly the same as any other pen in the box. When reaching into the box to randomly draw five pens without replacement, what is the proportion of getting exactly four pens of the same colour (Note: the numbers matter but the order does not)?","a-box-of-numbered-pens-has-12-red-12-blue-12-green-and-12-yellow-pens-the-pens-for-each-colour-are-numbered-from-1-to-12-there-is-a-unique-number-on-each-pen-so-no-pen-is-exactly-the-same-as-any",{"id":280,"category":36,"text_question":281,"slug":282},534330,"9 x² + 2x + 1 = 0","9-x-2x-1-0",{"id":284,"category":36,"text_question":285,"slug":286},534388,"A contractor gives a bank note for $10250 at a rate of 1% for one month. How much interest\nis charged for 4 months?","a-contractor-gives-a-bank-note-for-10250-at-a-rate-of-1-for-one-month-how-much-interest-is-charged-for-4-months",{"id":288,"category":36,"text_question":289,"slug":290},534433,"A natural gas company has a fixed rate of 1,320 pesos plus 1,590 pesos per cubic meter of gas consumed monthly per customer.\n Indicate the cost function to determine the value in pesos of the cubic meters of gas consumed in a month per customer.\n How much did a customer who consumed 18 cubic meters of gas pay?\n If a customer paid 34,710 pesos, how many cubic meters of gas did he consume?","a-natural-gas-company-has-a-fixed-rate-of-1-320-pesos-plus-1-590-pesos-per-cubic-meter-of-gas-consumed-monthly-per-customer-indicate-the-cost-function-to-determine-the-value-in-pesos-of-the-cubic-me",{"id":292,"category":36,"text_question":293,"slug":294},534437,"nI Exercises 65-68, the latitudes of a pair of cities are given. Assume that one city si directly south of the other and that the earth is a perfect sphere of radius 4000 miles. Use the arc length formula in terms of degrees to find the distance between the two cities.\n65. The North Pole: latitude 90° north Springfield, Illinois: latitude 40° north","ni-exercises-65-68-the-latitudes-of-a-pair-of-cities-are-given-assume-that-one-city-si-directly-south-of-the-other-and-that-the-earth-is-a-perfect-sphere-of-radius-4000-miles-use-the-arc-length-for",{"id":296,"category":36,"text_question":297,"slug":298},534463,"Calculate the area of the parallelogram with adjacent vertices (1,4, −2), (−3,1,6) 𝑦 (1, −2,3)","calculate-the-area-of-the-parallelogram-with-adjacent-vertices-1-4-2-3-1-6-y-1-2-3",{"id":300,"category":36,"text_question":301,"slug":302},534476,"You buy a $475,000 house and put 15% down. If you take a 20 year amortization and the rate is 2.34%, what would the monthly payment be?","you-buy-a-475-000-house-and-put-15-down-if-you-take-a-20-year-amortization-and-the-rate-is-2-34-what-would-the-monthly-payment-be",{"id":304,"category":36,"text_question":305,"slug":306},534531,"The average weekly earnings in the leisure and hospitality industry group for a re‐\r\ncent year was $273. A random sample of 40 workers showed weekly average ear‐\r\nnings of $285 with the population standard deviation equal to 58. At the 0.05 level of\r\nsignificance can it be concluded that the mean differs from $273? Find a 95% con‐\r\nfidence interval for the weekly earnings and show that it supports the results of the\r\nhypothesis test.","the-average-weekly-earnings-in-the-leisure-and-hospitality-industry-group-for-a-re-cent-year-was-273-a-random-sample-of-40-workers-showed-weekly-average-ear-nings-of-285-with-the-population-sta",{"id":308,"category":36,"text_question":309,"slug":310},534650,"A rectangular swimming pool has a length of 14 feet, a width of 26 feet and a depth of 5 feet. Round answers to the nearest hundredth as needed.\n\n\n(a) How many cubic feet of water can the pool hold?\n cubic feet\n(b) The manufacturer suggests filling the pool to 95% capacity. How many cubic feet of water is this?\n cubic feet","a-rectangular-swimming-pool-has-a-length-of-14-feet-a-width-of-26-feet-and-a-depth-of-5-feet-round-answers-to-the-nearest-hundredth-as-needed-a-how-many-cubic-feet-of-water-can-the-pool-hold",{"data":312},{"questions":313},[314,318,322,326,330,334,338,342,346,350,354,358,362,366,367,371,375,379,383,387],{"id":315,"category":36,"text_question":316,"slug":317},532012,"Find an arc length parameterization of the curve that has the same orientation as the given curve and for which the reference point corresponds to t=0. Use an arc length s as a parameter. r(t) = 3(e^t) cos (t)i + 3(e^t)sin(t)j; 0\u003C=t\u003C=(3.14/2)","find-an-arc-length-parameterization-of-the-curve-that-has-the-same-orientation-as-the-given-curve-and-for-which-the-reference-point-corresponds-to-t-0-use-an-arc-length-s-as-a-parameter-r-t-3-e-t",{"id":319,"category":36,"text_question":320,"slug":321},532019,"If we have the sequence: 3, 6, 12, 24\n\nPlease determine the 14th term.","if-we-have-the-sequence-3-6-12-24-please-determine-the-14th-term",{"id":323,"category":36,"text_question":324,"slug":325},532303,"How many percent is one second out a 24 hour?","how-many-percent-is-one-second-out-a-24-hour",{"id":327,"category":36,"text_question":328,"slug":329},534008,"Supposed 60% of the register voters in a country or democrat. If a sample of 793 voters is selected, what is the probability that the sample proportion of Democrats will be greater than 64% round your answer to four decimal places","supposed-60-of-the-register-voters-in-a-country-or-democrat-if-a-sample-of-793-voters-is-selected-what-is-the-probability-that-the-sample-proportion-of-democrats-will-be-greater-than-64-round-your",{"id":331,"category":36,"text_question":332,"slug":333},534231,"89, ÷ 10","89-10",{"id":335,"category":36,"text_question":336,"slug":337},534279,"Which of the methods below can be used to workout 95% of an amount?\na. Dividing the amount 100 and multiply by 95\nb. Working out 5% of the amount and taking it away from the full amount\nc. Dividing 95 by 100 and multiplying the answer by the amount\nd. Dividing the amount by 95 and then multiply by 100","which-of-the-methods-below-can-be-used-to-workout-95-of-an-amount-a-dividing-the-amount-100-and-multiply-by-95-b-working-out-5-of-the-amount-and-taking-it-away-from-the-full-amount-c-dividing-95",{"id":339,"category":36,"text_question":340,"slug":341},534280,"A machine produces 255 bolts in 24 minutes. At the same rate, how many bolts would be produced in 40 minutes?","a-machine-produces-255-bolts-in-24-minutes-at-the-same-rate-how-many-bolts-would-be-produced-in-40-minutes",{"id":343,"category":36,"text_question":344,"slug":345},534336,"3%2B2","3-2b2",{"id":347,"category":36,"text_question":348,"slug":349},534381,"A company made 150,000 in the first year 145,000 in the second 140,000 in the third year successively during the first decade of this company's existence it made a total of","a-company-made-150-000-in-the-first-year-145-000-in-the-second-140-000-in-the-third-year-successively-during-the-first-decade-of-this-company-s-existence-it-made-a-total-of",{"id":351,"category":36,"text_question":352,"slug":353},534417,"Let X be a discrete random variable such that E(X)=3 and V(X)=5. Let 𝑌 = 2𝑋^2 − 3𝑋. Determine E(Y).","let-x-be-a-discrete-random-variable-such-that-e-x-3-and-v-x-5-let-y-2x-2-3x-determine-e-y",{"id":355,"category":36,"text_question":356,"slug":357},534469,"Determine the kinetic energy of a baseball whose mass is 100 grams and has a speed of 30 m/s.","determine-the-kinetic-energy-of-a-baseball-whose-mass-is-100-grams-and-has-a-speed-of-30-m-s",{"id":359,"category":36,"text_question":360,"slug":361},534488,"7- A printing company found in its investigations that there were an average of 6 errors in 150-page prints. Based on this information, what is the probability of there being 48 errors in a 1200-page job?","7-a-printing-company-found-in-its-investigations-that-there-were-an-average-of-6-errors-in-150-page-prints-based-on-this-information-what-is-the-probability-of-there-being-48-errors-in-a-1200-page",{"id":363,"category":36,"text_question":364,"slug":365},534512,"Oi👋🏻\r\n\r\nToque em \"Criar Nova Tarefa\" para enviar seu problema de matemática.\r\n\r\nUm dos nossos especialistas começará a trabalhar nisso imediatamente!","oi-toque-em-criar-nova-tarefa-para-enviar-seu-problema-de-matematica-um-dos-nossos-especialistas-comecara-a-trabalhar-nisso-imediatamente",{"id":304,"category":36,"text_question":305,"slug":306},{"id":368,"category":36,"text_question":369,"slug":370},534535,"Calculate NPV, IRR and PAYBACK through a cash flow for a period of five years, with\n discount rate of:\n a) 10%\n b) 12%\n c) 15%\n\n initial annual cost $41,400,000","calculate-npv-irr-and-payback-through-a-cash-flow-for-a-period-of-five-years-with-discount-rate-of-a-10-b-12-c-15-initial-annual-cost-41-400-000",{"id":372,"category":36,"text_question":373,"slug":374},534580,"4m - 3t + 7 = 16","4m-3t-7-16",{"id":376,"category":36,"text_question":377,"slug":378},534625,"Define excel and why we use it?","define-excel-and-why-we-use-it",{"id":380,"category":36,"text_question":381,"slug":382},534637,"g(x)=3(x+8). What is the value of g(12)","g-x-3-x-8-what-is-the-value-of-g-12",{"id":384,"category":36,"text_question":385,"slug":386},534687,"Suppose a car license plate consists of 2 letters and two digits of which the first cannot be zero. How many different plates can be engraved? consider only 26 letters and 10 digits draw an example of this.","suppose-a-car-license-plate-consists-of-2-letters-and-two-digits-of-which-the-first-cannot-be-zero-how-many-different-plates-can-be-engraved-consider-only-26-letters-and-10-digits-draw-an-example-of",{"id":388,"category":36,"text_question":389,"slug":390},534693,"Find the number of liters of water needed to reduce 9 liters of lotion.\n shave containing 50% alcohol to a lotion containing 30% alcohol.","find-the-number-of-liters-of-water-needed-to-reduce-9-liters-of-lotion-shave-containing-50-alcohol-to-a-lotion-containing-30-alcohol",{"data":392},[393,397,401],{"id":394,"question":395,"answer":396},104229,"What is the area of a square with a side length of \"s\"?","The area of a square can be found by squaring the length of its side. Thus, the formula to find the area is A = s^2.",{"id":398,"question":399,"answer":400},137933,"What is the radian measure of an angle subtended by an arc of length 3 units in a circle of radius 2 units?","The radian measure is 3/2 radians. In general, the radian measure of an angle is equal to the ratio of the arc length to the radius of the circle.",{"id":402,"question":403,"answer":404},124167,"What is the vertex form equation of a quadratic function with a vertex at (-3, 2)?","The vertex form equation is f(x) = a(x - h)^2 + k, where (h, k) is the vertex. Therefore, f(x) = a(x + 3)^2 + 2.",{"$sicons":406},{"bxl:facebook-circle":407,"bxl:instagram":411,"mdi:web":413,"la:apple":415,"ph:google-logo-bold":418,"ph:google-logo":421},{"left":408,"top":408,"width":409,"height":409,"rotate":408,"vFlip":184,"hFlip":184,"body":410},0,24,"\u003Cpath fill=\"currentColor\" d=\"M12.001 2.002c-5.522 0-9.999 4.477-9.999 9.999c0 4.99 3.656 9.126 8.437 9.879v-6.988h-2.54v-2.891h2.54V9.798c0-2.508 1.493-3.891 3.776-3.891c1.094 0 2.24.195 2.24.195v2.459h-1.264c-1.24 0-1.628.772-1.628 1.563v1.875h2.771l-.443 2.891h-2.328v6.988C18.344 21.129 22 16.992 22 12.001c0-5.522-4.477-9.999-9.999-9.999\"/>",{"left":408,"top":408,"width":409,"height":409,"rotate":408,"vFlip":184,"hFlip":184,"body":412},"\u003Cpath fill=\"currentColor\" d=\"M11.999 7.377a4.623 4.623 0 1 0 0 9.248a4.623 4.623 0 0 0 0-9.248m0 7.627a3.004 3.004 0 1 1 0-6.008a3.004 3.004 0 0 1 0 6.008\"/>\u003Ccircle cx=\"16.806\" cy=\"7.207\" r=\"1.078\" fill=\"currentColor\"/>\u003Cpath fill=\"currentColor\" d=\"M20.533 6.111A4.6 4.6 0 0 0 17.9 3.479a6.6 6.6 0 0 0-2.186-.42c-.963-.042-1.268-.054-3.71-.054s-2.755 0-3.71.054a6.6 6.6 0 0 0-2.184.42a4.6 4.6 0 0 0-2.633 2.632a6.6 6.6 0 0 0-.419 2.186c-.043.962-.056 1.267-.056 3.71s0 2.753.056 3.71c.015.748.156 1.486.419 2.187a4.6 4.6 0 0 0 2.634 2.632a6.6 6.6 0 0 0 2.185.45c.963.042 1.268.055 3.71.055s2.755 0 3.71-.055a6.6 6.6 0 0 0 2.186-.419a4.6 4.6 0 0 0 2.633-2.633c.263-.7.404-1.438.419-2.186c.043-.962.056-1.267.056-3.71s0-2.753-.056-3.71a6.6 6.6 0 0 0-.421-2.217m-1.218 9.532a5 5 0 0 1-.311 1.688a3 3 0 0 1-1.712 1.711a5 5 0 0 1-1.67.311c-.95.044-1.218.055-3.654.055c-2.438 0-2.687 0-3.655-.055a5 5 0 0 1-1.669-.311a3 3 0 0 1-1.719-1.711a5.1 5.1 0 0 1-.311-1.669c-.043-.95-.053-1.218-.053-3.654s0-2.686.053-3.655a5 5 0 0 1 .311-1.687c.305-.789.93-1.41 1.719-1.712a5 5 0 0 1 1.669-.311c.951-.043 1.218-.055 3.655-.055s2.687 0 3.654.055a5 5 0 0 1 1.67.311a3 3 0 0 1 1.712 1.712a5.1 5.1 0 0 1 .311 1.669c.043.951.054 1.218.054 3.655s0 2.698-.043 3.654z\"/>",{"left":408,"top":408,"width":409,"height":409,"rotate":408,"vFlip":184,"hFlip":184,"body":414},"\u003Cpath fill=\"currentColor\" d=\"M16.36 14c.08-.66.14-1.32.14-2s-.06-1.34-.14-2h3.38c.16.64.26 1.31.26 2s-.1 1.36-.26 2m-5.15 5.56c.6-1.11 1.06-2.31 1.38-3.56h2.95a8.03 8.03 0 0 1-4.33 3.56M14.34 14H9.66c-.1-.66-.16-1.32-.16-2s.06-1.35.16-2h4.68c.09.65.16 1.32.16 2s-.07 1.34-.16 2M12 19.96c-.83-1.2-1.5-2.53-1.91-3.96h3.82c-.41 1.43-1.08 2.76-1.91 3.96M8 8H5.08A7.92 7.92 0 0 1 9.4 4.44C8.8 5.55 8.35 6.75 8 8m-2.92 8H8c.35 1.25.8 2.45 1.4 3.56A8 8 0 0 1 5.08 16m-.82-2C4.1 13.36 4 12.69 4 12s.1-1.36.26-2h3.38c-.08.66-.14 1.32-.14 2s.06 1.34.14 2M12 4.03c.83 1.2 1.5 2.54 1.91 3.97h-3.82c.41-1.43 1.08-2.77 1.91-3.97M18.92 8h-2.95a15.7 15.7 0 0 0-1.38-3.56c1.84.63 3.37 1.9 4.33 3.56M12 2C6.47 2 2 6.5 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2\"/>",{"left":408,"top":408,"width":416,"height":416,"rotate":408,"vFlip":184,"hFlip":184,"body":417},32,"\u003Cpath fill=\"currentColor\" d=\"M20.844 2c-1.64 0-3.297.852-4.407 2.156v.032c-.789.98-1.644 2.527-1.375 4.312c-.128-.05-.136-.035-.28-.094c-.692-.281-1.548-.594-2.563-.594c-3.98 0-7 3.606-7 8.344c0 3.067 1.031 5.942 2.406 8.094c.688 1.078 1.469 1.965 2.281 2.625S11.57 28 12.531 28s1.68-.324 2.219-.563c.54-.238.957-.437 1.75-.437c.715 0 1.078.195 1.625.438c.547.242 1.293.562 2.281.562c1.07 0 1.98-.523 2.719-1.188s1.36-1.519 1.875-2.343c.516-.824.922-1.633 1.219-2.282c.148-.324.258-.593.343-.812s.13-.281.188-.531l.188-.813l-.75-.343a5.3 5.3 0 0 1-1.5-1.063c-.625-.637-1.157-1.508-1.157-2.844A4.08 4.08 0 0 1 24.563 13c.265-.309.542-.563.75-.719c.105-.078.187-.117.25-.156c.062-.04.05-.027.156-.094l.843-.531l-.562-.844c-1.633-2.511-4.246-2.844-5.281-2.844c-.48 0-.82.168-1.25.25c.242-.226.554-.367.75-.624c.004-.004-.004-.028 0-.032q.018-.016.031-.031h.031a6.16 6.16 0 0 0 1.563-4.438L21.78 2zm-1.188 2.313c-.172.66-.453 1.289-.906 1.78l-.063.063c-.382.516-.972.899-1.562 1.125c.164-.652.45-1.312.844-1.812c.008-.012.023-.02.031-.032c.438-.5 1.043-.875 1.656-1.125zm-7.437 5.5c.558 0 1.172.21 1.812.468s1.239.594 2.094.594c.852 0 1.496-.336 2.25-.594s1.559-.469 2.344-.469c.523 0 1.816.333 2.906 1.344c-.191.172-.36.297-.563.531a6.2 6.2 0 0 0-1.53 4.094c0 1.906.831 3.34 1.718 4.25c.55.563.89.696 1.313.938c-.055.125-.086.222-.157.375a19 19 0 0 1-1.093 2.062c-.454.727-1.004 1.434-1.532 1.907c-.527.472-1 .687-1.375.687c-.566 0-.898-.156-1.468-.406S17.581 25 16.5 25c-1.137 0-1.977.336-2.563.594c-.585.258-.89.406-1.406.406c-.246 0-.777-.2-1.375-.688c-.597-.488-1.254-1.23-1.844-2.156c-1.183-1.851-2.093-4.394-2.093-7c0-3.941 2.199-6.343 5-6.343\"/>",{"left":408,"top":408,"width":419,"height":419,"rotate":408,"vFlip":184,"hFlip":184,"body":420},256,"\u003Cpath fill=\"currentColor\" d=\"M228 128a100 100 0 1 1-22.86-63.64a12 12 0 0 1-18.51 15.28A76 76 0 1 0 203.05 140H128a12 12 0 0 1 0-24h88a12 12 0 0 1 12 12\"/>",{"left":408,"top":408,"width":419,"height":419,"rotate":408,"vFlip":184,"hFlip":184,"body":422},"\u003Cpath fill=\"currentColor\" d=\"M224 128a96 96 0 1 1-21.95-61.09a8 8 0 1 1-12.33 10.18A80 80 0 1 0 207.6 136H128a8 8 0 0 1 0-16h88a8 8 0 0 1 8 8\"/>",{"oVhJaef6Ht":8,"t96FybqVTi":8,"5lK7LS5al0":8,"oPD4fesvU6":8,"5oSQ2a90xd":8,"2QISyIzlyM":8,"HGsO2Ckakl":8},"/general/1-consider-a-class-with-a-normal-distribution-of-grades-of-5-5-the-standard-deviation-is-0-5-calculate-the-percentage-of-students-who-obtained-a-grade-a-between-5-and-6-b-above-6-c-below-5"] AppleWebKit/537.36 KHTML,likeGecko Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://gcdn.fx2.io/math-master.org/"}}