Question

1) The university library purchased books on macroeconomics, microeconomics and statistics. She devoted €500 to the purchase of macroeconomics books (unit price €50), €1000 to the purchase of microeconomics books (unit price €50) and €500 to the purchase of statistics works (unit price €25). The average price of a work is: (A) €40 (b) €38 (c) €35 (d) €41.6

146

likes
729 views

Answer to a math question 1) The university library purchased books on macroeconomics, microeconomics and statistics. She devoted €500 to the purchase of macroeconomics books (unit price €50), €1000 to the purchase of microeconomics books (unit price €50) and €500 to the purchase of statistics works (unit price €25). The average price of a work is: (A) €40 (b) €38 (c) €35 (d) €41.6

Expert avatar
Sigrid
4.5
115 Answers
Pour connaître le prix moyen d’une œuvre, il faut calculer la dépense totale en livres et la diviser par le nombre total de livres achetés. La bibliothèque universitaire a dépensé : 500 € sur les livres de macroéconomie 1000 € sur les livres de microéconomie 500 € sur les livres de statistiques Les prix unitaires sont : 50 € pour les livres de macroéconomie 50 € pour les livres de microéconomie 25 € pour les livres de statistiques Pour connaître le nombre total de livres achetés dans chaque catégorie, nous divisons les dépenses par le prix unitaire. Pour les livres de macroéconomie : 500 € / 50 € = 10 livres Pour les livres de microéconomie : 1000 € / 50 € = 20 livres Pour les livres de statistiques : 500 € / 25 € = 20 livres Le nombre total de livres achetés est de 10 + 20 + 20 = 50 livres. Maintenant, pour trouver le prix moyen par livre, on divise la dépense totale par le nombre total de livres : Dépense totale = 500 € + 1 000 € + 500 € = 2 000 € Prix moyen par livre = Dépense totale / Nombre total de livres = 2000€ / 50 = 40€ Ainsi, le prix moyen d'une œuvre est de 40 €, ce qui correspond à l'option (A).

Frequently asked questions (FAQs)
What is the value of f'(g(x)) ⋅ g'(x), given f(x) = sin(x) and g(x) = x^3 + 2x?
+
What is the limit as x approaches 0 of (3x^2 + 4x)/(2x^2 + 5)?
+
What is the area of a rectangle with length 10cm and width 5cm?
+
New questions in Mathematics
A pump with average discharge of 30L/second irrigate 100m wide and 100m length field area crop for 12 hours. What is an average depth of irrigation in mm unIt?
Solution to the equation y'' - y' - 6y = 0
A car tire can rotate at a frequency of 3000 revolutions per minute. Given that a typical tire radius is 0.5 m, what is the centripetal acceleration of the tire?
Solve: −3(−2x+23)+12=6(−4x+9)+9.
The ratio of tomatoes to red apples is 2:5. If there are 20 tomaoes in the garden, how many red apples are there?
Supposed 60% of the register voters in a country or democrat. If a sample of 793 voters is selected, what is the probability that the sample proportion of Democrats will be greater than 64% round your answer to four decimal places
In a store, a person carries 14 kilos of rice and 28 kilos of flour. In what ratio are the kilos found? (Remember to simplify until you reach an irreducible fraction)
Log(45)
Clara usually walks briskly to the farmers' market and it takes her 22 minutes. Today she walked leisurely and it took 61/2 minutes. How much more time than usual did she take to reach the market today?
prove that if n odd integer then n^2+5 is even
Prove that it is not possible to arrange the integers 1 to 240 in a table with 15 rows and 16 columns in such a way that the sum of the numbers in each of the columns is the same.
I want you to solve this problem as a grade sixth pupil in primary school: 8 Pigs ate 6 bags of fee in 20 days. How long will it take 10 pigs to eat 15 bags of feed eating at the same rate?
Is -11/8 greater than or less than -1.37?
The two sides of the triangle are 12 cm and 5 cm, and the angle between the sides is 60°. Cover the area of ​​the triangle!
Find the equation of a straight line that has slope 3 and passes through the point of (1, 7) . Write the equation of the line in general forms
What is the percentage of nitrogen abundance in copper dinatrate Cu(NO3)2
The slope of the tangent line to the curve f(x)=4tan x at the point (π/4,4)
Find the orthogonal projection of a point A = (1, 2, -1) onto a line passing through the points Pi = (0, 1, 1) and P2 = (1, 2, 3).
Let f(x)=-1/2x+5 evaluate f(-6)
13/25+7/16