1. Compute the product:
\frac{4}{7} \times -\frac{14}{20} = \frac{4 \times -14}{7 \times 20} = \frac{-56}{140} = -\frac{2}{5}
2. Simplify the division in the second term:
3 \div 2 = \frac{3}{2}
So,
-\frac{1}{\frac{3}{2}} = -\frac{1 \times 2}{3} = -\frac{2}{3}
3. Now substitute the simplified terms into the original expression:
-\frac{2}{5} - -\frac{2}{3} = -\frac{2}{5} + \frac{2}{3}
4. Find a common denominator for the fractions:
The least common multiple of 5 and 3 is 15.
Rewrite the fractions:
-\frac{2}{5} = -\frac{2 \times 3}{5 \times 3} = -\frac{6}{15}
\frac{2}{3} = \frac{2 \times 5}{3 \times 5} = \frac{10}{15}
5. Combine the fractions:
-\frac{6}{15} + \frac{10}{15} = \frac{-6 + 10}{15} = \frac{4}{15}
6. Therefore, the final simplified answer is:
\frac{4}{15}