1. Convert the angle to radians if necessary (not needed as most calculators can handle degrees directly).
2. Calculate the x-component using the cosine function:
r_x = 22.5 \cos(190^\circ)
r_x \approx 22.5 \times (-0.9397)
r_x\approx-22.2
3. Calculate the y-component using the sine function:
r_y = 22.5 \sin(190^\circ)
r_y \approx 22.5 \times (-0.3420)
r_y\approx-3.9\text{ }
Thus, the x-component and y-component of the position vector are approximately:
r_x\approx-22.2\text{ }
r_y\approx-3.9\text{ }