Question

A savings loan offers 6% compounded quarterly. What is the effective rate to two decimal places? O 6.40% O 6.23% O 6.14% 0 6.27%

158

likes
789 views

Answer to a math question A savings loan offers 6% compounded quarterly. What is the effective rate to two decimal places? O 6.40% O 6.23% O 6.14% 0 6.27%

Expert avatar
Seamus
4.9
98 Answers
The formula for the effective annual rate (EAR) is:

EAR = \left(1 + \frac{r}{n}\right)^n - 1

Where:
- \( r \) = nominal annual interest rate (0.06 for 6%)
- \( n \) = number of compounding periods per year (4 for quarterly)

Step 1: Substitute the given values into the formula.

EAR = \left(1 + \frac{0.06}{4}\right)^4 - 1

Step 2: Calculate \(\frac{0.06}{4}\):

\frac{0.06}{4} = 0.015

Step 3: Add 1 to the result of Step 2:

1 + 0.015 = 1.015

Step 4: Raise the result of Step 3 to the power of 4:

(1.015)^4

Step 5: Calculate the power:

(1.015)^4 \approx 1.06136

Step 6: Subtract 1 from the result of Step 5 to find EAR:

1.06136 - 1 = 0.06136

Step 7: Convert the result to a percentage:

0.06136 \times 100 \approx 6.14\%

Therefore, the effective rate is:

6.14\%

Frequently asked questions (FAQs)
What is the standard equation of an ellipse with a major axis of length 10 and a minor axis of length 6?
+
What is the sign of equality for congruent triangles, and why is it important in geometric proofs?
+
Question: What is the value of arccos(cos(pi/6))?
+
New questions in Mathematics
calculate the derivative by the limit definition: f(x) = 6x^3 + 2
String x = 5 Int y=2 System.out.println(x+y)
The profit G of the company CHUNCHES SA is given by G(x) = 3Γ—(40 – Γ—), where Γ— is the quantity of items sold. Find the maximum profit.
Consider numbers from 1 to 2023. We want to delete 3 consecutive, so that the avarage of the left numbers is a whole number. How do we do that
A brass cube with an edge of 3 cm at 40 Β°C increased its volume to 27.12 cm3. What is the final temperature that achieves this increase?
The actual length of an object is 1.3 m . If the blueprint uses a scale of 1 : 12 , what is the length of the line on the drawing?
the probabilty that a person has a motorcycle, given that she owns a car 25%. the percentage of people owing a motorcycle is 15% and that who own a car is 35%. find probabilty that a person owns any one or both of those
2/3+5/6Γ—1/2
(24, -7) is on the terminal arm of an angle in standard position. Determine the exact values of the primary trigonometric functions.
The market for economics textbooks is represented by the following supply and demand equations: P = 5 + 2Qs P = 20 - Qd Where P is the price in Β£s and Qs and Qd are the quantities supplied and demanded in thousands. What is the equilibrium price?
Fill in the P(X-x) values to give a legitimate probability distribution for the discrete random variable X, whose possible values are -5 ,3 , 4, 5 , and 6.
List the remaining zeros of the polynomial with the given zeros Zeros are: 2, 3i, and 3 + i
2X+2=8
What is the total amount due and the amount of interest on a 3-year loan of $1,000 at a simple interest rate of 12% per year?
X^X =49 X=?
8. Measurement Jillian measured the distance around a small fish pond to be 27 yards. What would be a good estimate of the distance across the pond: 14 yards, 9 yards, or 7 yards? Explain how you decided.
9n + 7(-8 + 4k) use k=2 and n=3
6(k-7) -2=5
Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ΒΏ by: T (t )=(20 t +10)eβˆ’0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(βˆ’10 t +15)eβˆ’0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10βˆ’2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ΒΏ by: T (t )=(20 t +10)eβˆ’0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(βˆ’10 t +15)eβˆ’0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10βˆ’2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.
Construct a set of six pieces of data with​ mean, median, and midrange of 67 and where no two pieces of data are the same.