Question

After starting, a subway should reach a speed of 50 km/h over a distance of 100 m. 1) what specific acceleration is necessary

165

likes
826 views

Answer to a math question After starting, a subway should reach a speed of 50 km/h over a distance of 100 m. 1) what specific acceleration is necessary

Expert avatar
Corbin
4.6
102 Answers
Um die spezifische Beschleunigung zu berechnen, die eine U-Bahn benötigt, um auf einer Strecke von 100 m eine Geschwindigkeit von 50 km/h zu erreichen, können wir die kinematische Gleichung verwenden: v^2 = u^2 + 2as Wo: - \( v \) ist die Endgeschwindigkeit (50 km/h), - \( u \) ist die Anfangsgeschwindigkeit (0 km/h, vorausgesetzt, die U-Bahn startet aus dem Ruhezustand), - \( a \) ist die Beschleunigung, - \( s \) ist die Distanz, über die die Beschleunigung auftritt (100 m). Zuerst müssen wir die Endgeschwindigkeit in Meter pro Sekunde (m/s) umrechnen: 50 \text{ km/h} = \frac{50 \times 1000}{3600} \text{ m/s} = 13,89 \text{ m/s} Jetzt können wir die Werte in die Gleichung einsetzen und nach \( a \) auflösen: (13,89 \text{ m/s})^2 = (0 \text{ m/s})^2 + 2 \times a \times 100 \text{ m} 193,21 \text{ m}^2/\text{s}^2 = 200a \text{ m} a = \frac{193,21}{200} \text{ m/s}^2 a = 0,966 \text{ m/s}^2 Die spezifische Beschleunigung, die die U-Bahn benötigt, um über eine Distanz von 100 m eine Geschwindigkeit von 50 km/h zu erreichen, beträgt also ungefähr \( 0,966 \text{ m/s}^2 \).

Frequently asked questions (FAQs)
What is the volume of a cone with radius 5 units and height 8 units?
+
Math question: Solve for x in the logarithmic equation log base 2 of (2x-3) = log base 4 of x.
+
Question: What is the mode and median of the data set {2, 3, 4, 4, 6, 6, 7, 8, 9, 9, 9}?
+
New questions in Mathematics
What is the coefficient of elasticity of the material that must be placed on the heel of the 10 cm high clog, with a base area of 2 cm² so that it deforms only 2 cm when the force on it will be a maximum of 600 N.
what is 9% of 307
If L = (-2, -5) is reflected across y= -4 , what are the coordinates of L?
6. Among 100 of products there are 20 rejects. We will randomly select 10 of products. The random variable X indicates the number of rejects among the selected products. Determine its distribution.
Suppose X has a Poisson distribution, with a mean of 0.4. Determine the probability that x is at most 2.
A force of 750 pounds compresses a spring 3 inches from its natural length, which is 15 inches. What will be the work done to compress it 3 inches more?
12(3+7)-5
Find all real numbers x that satisfy the equation \sqrt{x^2-2}=\sqrt{3-x}
The sum of two numbers is 144. Double the first number minus thrice the second number is equal to 63. Determine the first two numbers.
The price per night of a suite at the Baglioni Hotel in Venice is 1896 euros, VAT included. The VAT in Italy is 25%. The hotel gets a return of 10% out of the price VAT included. b) What is the profit value made by the hotel for one
A box of numbered pens has 12 red, 12 blue, 12 green and 12 yellow pens. The pens for each colour are numbered from 1 to 12. There is a unique number on each pen, so no pen is exactly the same as any other pen in the box. When reaching into the box to randomly draw five pens without replacement, what is the proportion of getting exactly four pens of the same colour (Note: the numbers matter but the order does not)?
3/9*4/8=
Two minus log 3X equals log (X over 12)
Express the trigonometric form of the complex z = -1 + i.
We have received our p&l statement back from accounts. The board has asked for an innovation hub. What items should we prioritise reviewing to decide if we can afford an innovation hub?
Give an example of a function defined in R that is continuous in all points, except in the set Z of integers.
P 13. Let P a point inside of a square ABCD. Show that the perpendicular lines drawn from A, B, C, respectively D, to BP, CP, DP, respectively AP are concurrent. Use geometric rotation.
y′ = 2x + 3y x′ = 7x − 4y x(0) = 2 y(0) = −1 sisteminin ¸c¨oz¨um¨un¨u bulunuz. (Lineer Denk. Sis.)
The domain of the function f(x)=x+7x2−144 is (−∞,), ( ,), and ( , ∞).
Construct a set of six pieces of data with​ mean, median, and midrange of 67 and where no two pieces of data are the same.