1. Use the compound interest formula:
A = P \left(1 + \frac{r}{n}\right)^{nt}
2. Substitute the values:
4,800,000 = 3,400,000 \left(1 + \frac{r}{12}\right)^{12 \times 2}
3. Simplify and solve for \( r \):
\frac{4,800,000}{3,400,000} = \left(1 + \frac{r}{12}\right)^{24}
1.4117647 = \left(1 + \frac{r}{12}\right)^{24}
4. Take the 24th root of both sides:
\left(1.4117647\right)^{\frac{1}{24}} = 1 + \frac{r}{12}
5. Isolate \( r \):
\left(1.4117647\right)^{\frac{1}{24}} - 1 = \frac{r}{12}
6. Multiply by 12:
r = 12 \left(\left(1.4117647\right)^{\frac{1}{24}} - 1\right)
7. Calculate the numerical value:
r\approx0.173665\text{ or }17.3665\%
8. Answer:
r\approx0.173665\text{ or }17.37\%