1. Use the compound interest formula:
 A = P \left(1 + \frac{r}{n}\right)^{nt}  
2. Substitute the values:
 4,800,000 = 3,400,000 \left(1 + \frac{r}{12}\right)^{12 \times 2}  
3. Simplify and solve for \( r \):
 \frac{4,800,000}{3,400,000} = \left(1 + \frac{r}{12}\right)^{24}  
 1.4117647 = \left(1 + \frac{r}{12}\right)^{24}  
4. Take the 24th root of both sides:
 \left(1.4117647\right)^{\frac{1}{24}} = 1 + \frac{r}{12}  
5. Isolate \( r \):
 \left(1.4117647\right)^{\frac{1}{24}} - 1 = \frac{r}{12}  
6. Multiply by 12:
 r = 12 \left(\left(1.4117647\right)^{\frac{1}{24}} - 1\right)  
7. Calculate the numerical value:
r\approx0.173665\text{ or }17.3665\% 
8. Answer: 
r\approx0.173665\text{ or }17.37\%