Question

An object of mass 500 g and density 0.8 g/cm³ is immersed in a liquid of density 1.2 g/cm³. What is the volume of the object that remains outside the liquid?

207

likes
1036 views

Answer to a math question An object of mass 500 g and density 0.8 g/cm³ is immersed in a liquid of density 1.2 g/cm³. What is the volume of the object that remains outside the liquid?

Expert avatar
Gene
4.5
108 Answers
Para encontrar el volumen del objeto que queda fuera del líquido, primero debemos determinar el volumen del objeto y luego restar el volumen de la porción que está sumergida en el líquido. Denotemos: - m como la masa del objeto (500 g) - ho_o como densidad del objeto (0,8 g/cm³) - ho_l como densidad del líquido (1,2 g/cm³) - V_o como volumen del objeto (por determinar) - V_s como el volumen de la porción del objeto sumergida en el líquido Sabemos que la densidad ho se define como ho = m/v A partir de esto, podemos reorganizar la ecuación para resolver el volumen: V = m/ho Para el objeto: V_o = m/ho_o Vo = 500/0,8 Vo = 625 cm ^ 3 Ahora, para encontrar el volumen de la porción sumergida en el líquido, podemos utilizar el hecho de que la masa del líquido desplazado es igual a la masa del objeto sumergido: m_desplazamiento = m_ objeto sumergido ho_l *V_s = m Podemos resolver para V_s: V_s = m/ho_l V_s = 500/1,2 V_s=416,67cm^3 Finalmente, para encontrar el volumen del objeto que queda fuera del líquido, restamos el volumen sumergido al volumen total del objeto: Volumen fuera del líquido = V_o - V_s Volumen fuera del líquido = 625 - 416,67 Volumen exterior del líquido = 208,33 cm^3 Entonces, el volumen del objeto que queda fuera del líquido es aproximadamente 208,33 cm^3.

Frequently asked questions (FAQs)
Math Question: In a circle, angle CAB is 70° and angle BCD is 110°. Find the measure of angle CED.
+
What is the value of arcsin(sin(25°)) + arccos(cos(50°)) - arctan(tan(60°))?
+
Math Question: In △ABC, if ∠ABC ≅ ∠ACB, AB ≅ AC, and m∠BAC = 60°, what can we conclude about △ABC?
+
New questions in Mathematics
How to find the value of x and y which satisfy both equations x-2y=24 and 8x-y=117
Let f(x)=||x|−6|+|15−|x|| . Then f(6)+f(15) is equal to:
𝑦 = ( 𝑥2 − 3) (𝑥3 + 2 𝑥 + 1)
a ferry travels 1/6 of the distance between two ports in 3/7 hour. the ferry travels at a constant rate. at this rate, what fraction of the distance between the two ports can the ferry travel in one hour?
431414-1*(11111-1)-4*(5*3)
-11+29-18
Write 32/25 as a percent
solve the following trigo equation for 0°<= x <= 360°. sec x =-2
2.5 / 21.85
An electrical company manufactures batteries that have a duration that is distributed approximately normally, with a mean of 700 hours and a standard deviation of 40 hours. Find the probability that a randomly selected battery has an average life of less than 810 hours.
2x+4x=
Primes are numbers divisible only by 1 and themselves; There are infinitely many prime numbers and the first ones are 2, 3, 5, 7, 11, 13, 17, 19, 23, .... Consider a 12-sided die, with the faces numbered from 1 to 12. Out of 4 rolls, the probability that only the first three numbers are primes is:
Raúl, Gilberto and Arturo are playing golf; The probabilities of winning for each one are as follows: (Raúl wins) = 20% (Gilberto wins) = 0.05% (Arturo wins) = ¾%. Perform operations and order events from least to most probable.
A machine produces 255 bolts in 24 minutes. At the same rate, how many bolts would be produced in 40 minutes?
prove that for sets SS, AA, BB, and CC, where AA, BB, and CC are subsets of SS, the following equality holds: (A−B)−C=(A−C)−(B−C)
Write the inequality in the form of a<x<b. |x| < c^2
8. Measurement Jillian measured the distance around a small fish pond to be 27 yards. What would be a good estimate of the distance across the pond: 14 yards, 9 yards, or 7 yards? Explain how you decided.
4m - 3t + 7 = 16
6(k-7) -2=5
To apply a diagnostic test, in how many ways can 14 students be chosen out of 25? if the order does not matter