Question

calculates the exact area under the curve using Riemann sums of f(x)= 4-x2 on an interval [ 1,2]

251

likes
1254 views

Answer to a math question calculates the exact area under the curve using Riemann sums of f(x)= 4-x2 on an interval [ 1,2]

Expert avatar
Dexter
4.7
101 Answers
Para calcular el área exacta bajo la curva mediante sumas de Riemann de la función f(x) = 4 - x^2 en el intervalo [1,2], vamos a seguir los siguientes pasos:

Paso 1: Dividir el intervalo [1,2] en subintervalos iguales. Vamos a elegir n subintervalos para aproximar el área.

Paso 2: Calcular el ancho de cada subintervalo. Encuentra el valor de \Delta x dividiendo la longitud del intervalo (2 - 1) entre n, es decir, \Delta x = \frac{{2 - 1}}{n}.

Paso 3: Determinar los puntos de evaluación. Escoge un punto dentro de cada subintervalo para evaluar la función. Aquí utilizaremos el punto medio de cada subintervalo.

Paso 4: Calcular el área aproximada bajo la curva. Para cada subintervalo, calculamos el área de un rectángulo cuya altura es el valor de la función evaluada en el punto medio del subintervalo, y cuya base es el ancho del subintervalo. Luego, sumamos todas estas áreas de los rectángulos para obtener una aproximación del área bajo la curva.

Paso 5: Tomar el límite cuando n tiende a infinito. A medida que aumentamos el número de subintervalos, la aproximación del área se vuelve más precisa. Tomando el límite cuando n tiende a infinito, obtendremos el área exacta bajo la curva.

Ahora vamos a calcular el área exacta utilizando los métodos de sumas de Riemann:

Paso 1: Dividir el intervalo [1,2] en subintervalos iguales. Tomaremos n subintervalos.

Paso 2: Calcular el ancho de cada subintervalo. Tenemos \Delta x = \frac{{2 - 1}}{n} = \frac{1}{n}.

Paso 3: Determinar los puntos de evaluación. Utilizaremos el punto medio de cada subintervalo.

Paso 4: Calcular el área aproximada bajo la curva. Para cada subintervalo i, el punto de evaluación será x_i^* = 1 + \frac{\Delta x}{2} + i \cdot \Delta x, y el área del rectángulo correspondiente será A_i = f(x_i^*) \cdot \Delta x. Entonces, el área aproximada A será la suma de todas estas áreas:

A = \sum_{i=0}^{n-1} A_i = \sum_{i=0}^{n-1} f\left(1 + \frac{\Delta x}{2} + i \cdot \Delta x\right) \cdot \Delta x

El límite de esta suma cuando n tiende a infinito nos dará el área exacta bajo la curva.

Paso 5: Tomar el límite cuando n tiende a infinito. Es decir:

\lim_{{n \to \infty}} \sum_{i=0}^{n-1} f\left(1 + \frac{\Delta x}{2} + i \cdot \Delta x\right) \cdot \Delta x

Para calcular el límite de esta suma, podemos utilizar el teorema fundamental del cálculo o notar que la función f(x) = 4 - x^2 es continua en el intervalo [1,2] y, por lo tanto, integrable. Por lo tanto, el área exacta bajo la curva se puede calcular mediante la integral definida de la función en el intervalo [1,2]:

A = \int_{1}^{2} (4 - x^2) \, dx

Ahora podemos proceder a calcular la integral para obtener el área exacta:

\int_{1}^{2} (4 - x^2) \, dx = \left[ 4x - \frac{x^3}{3} \right]_{1}^{2}

Evaluamos la integral en los límites de integración:

= \left[ 4(2) - \frac{(2)^3}{3} \right] - \left[ 4(1) - \frac{(1)^3}{3} \right]

= \left[ 8 - \frac{8}{3} \right] - \left[ 4 - \frac{1}{3} \right]

= \left[ \frac{24}{3} - \frac{8}{3} \right] - \left[ \frac{12}{3} - \frac{1}{3} \right]

= \frac{16}{3} - \frac{11}{3}

= \frac{5}{3}

Entonces, el área exacta bajo la curva f(x) = 4 - x^2 en el intervalo [1,2] es \frac{5}{3}.

\textbf{Respuesta:} El área exacta bajo la curva mediante sumas de Riemann de f(x) = 4 - x^2 en el intervalo [1,2] es \frac{5}{3}.

Frequently asked questions (FAQs)
Math question: Graph the inequality y ≥ 2x - 5.
+
Math question: What is the limit of (3x^2 + 5x + 2) as x approaches 2?
+
Math question: What is the limit of (3x^2 - 5) / (2x + 1) as x approaches 2?
+
New questions in Mathematics
10.Silvana must knit a blanket in 9 days. Knitting 8 hours a day, at the end of the fifth day, only 2/5 of the blanket was done. To be able to finish on time, how many hours will Silvana have to knit per day?
What is the coefficient of elasticity of the material that must be placed on the heel of the 10 cm high clog, with a base area of 2 cm² so that it deforms only 2 cm when the force on it will be a maximum of 600 N.
Karina has a plot of 5,000 square meters in which she has decided that 60% of it will be used to plant vegetables. Of this part, 12% will be dedicated to planting lettuce. How much surface area of the plot will be used for cultivation?
90 divided by 40
Investing equal amounts of money into each of five business ventures Let's say you plan. 20 to choose from If there are initiatives, how many different ones among 20 initiatives? five startups can be selected?
How many kilometers does a person travel in 45 minutes if they move at a rate of 8.3 m/s?
For a temperature range between 177 degrees Celsius to 213 degrees Celsius, what is the temperature range in degrees Fahrenheit.
4x567
4x/2+5x-3/6=7/8-1/4-x
How many anagrams of the word STROMEC there that do not contain STROM, MOST, MOC or CEST as a subword? By subword is meant anything that is created by omitting some letters - for example, the word EMROSCT contains both MOC and MOST as subwords.
Calculate the minimum size of a simple random sample assuming a sampling error of 5% assuming that the population size is 100 elements
In a order to compare the means of two populations, independent random samples of 410 observations are selected from each population, with Sample 1 the results found in the table to the right. Complete parts a through e below. X1 = 5,319 S1= 143 a. Use a 95% confidence interval to estimate the difference between the population means (H - H2) Interpret the contidence interval. The contidence interval IS (Round to one decimal place as needed.) Sample 2 X2 = 5,285 S2 = 198 Aa. Use a 95% confidence interval to estimate the difference between the population means (A1 - M2) Interpret the contidence interval. The contidence interval Is (Round to one decimal place as needed.) b. Test the null hypothesis Ho versus alternative hypothesis Ha (H What is the test statistic? H2) + Give the significance level of the test, and interpret the result. Use a = 0.05. Z=
A recurring sequence is one where elements repeat after completing one standard. If the sequence AB8C14D96AB8C1... is recurring its twentieth term is equal to: (A) B. (B) 8. (C) A. (D) 6. (E) D.
A machine produces 255 bolts in 24 minutes. At the same rate, how many bolts would be produced in 40 minutes?
We have received our p&l statement back from accounts. The board has asked for an innovation hub. What items should we prioritise reviewing to decide if we can afford an innovation hub?
Calculate the pH of a solution obtained by mixing 100ml of 0.2M HCl with 100ml of 0.1M NaOH
solve R the following equation 4 x squared - 35 - 9 over x squared is equal to 0
For how long does the principal amount of €7,537 bring the same interest as the principal amount of €12,345 invested for 8 months? Interest calculation is simple and decursive.
Find the distance from the point (2,-1) to the line 2x-5y+10=0
Two trains leave stations 294 miles apart at the same time and travel toward each other. One train travels at 95 miles per hour while the other travels at 115 miles per hourHow long will it take for the two trains to meet?