Question

calculates the exact area under the curve using Riemann sums of f(x)= 4-x2 on an interval [ 1,2]

251

likes
1254 views

Answer to a math question calculates the exact area under the curve using Riemann sums of f(x)= 4-x2 on an interval [ 1,2]

Expert avatar
Dexter
4.7
114 Answers
Para calcular el área exacta bajo la curva mediante sumas de Riemann de la función f(x) = 4 - x^2 en el intervalo [1,2], vamos a seguir los siguientes pasos:

Paso 1: Dividir el intervalo [1,2] en subintervalos iguales. Vamos a elegir n subintervalos para aproximar el área.

Paso 2: Calcular el ancho de cada subintervalo. Encuentra el valor de \Delta x dividiendo la longitud del intervalo (2 - 1) entre n, es decir, \Delta x = \frac{{2 - 1}}{n}.

Paso 3: Determinar los puntos de evaluación. Escoge un punto dentro de cada subintervalo para evaluar la función. Aquí utilizaremos el punto medio de cada subintervalo.

Paso 4: Calcular el área aproximada bajo la curva. Para cada subintervalo, calculamos el área de un rectángulo cuya altura es el valor de la función evaluada en el punto medio del subintervalo, y cuya base es el ancho del subintervalo. Luego, sumamos todas estas áreas de los rectángulos para obtener una aproximación del área bajo la curva.

Paso 5: Tomar el límite cuando n tiende a infinito. A medida que aumentamos el número de subintervalos, la aproximación del área se vuelve más precisa. Tomando el límite cuando n tiende a infinito, obtendremos el área exacta bajo la curva.

Ahora vamos a calcular el área exacta utilizando los métodos de sumas de Riemann:

Paso 1: Dividir el intervalo [1,2] en subintervalos iguales. Tomaremos n subintervalos.

Paso 2: Calcular el ancho de cada subintervalo. Tenemos \Delta x = \frac{{2 - 1}}{n} = \frac{1}{n}.

Paso 3: Determinar los puntos de evaluación. Utilizaremos el punto medio de cada subintervalo.

Paso 4: Calcular el área aproximada bajo la curva. Para cada subintervalo i, el punto de evaluación será x_i^* = 1 + \frac{\Delta x}{2} + i \cdot \Delta x, y el área del rectángulo correspondiente será A_i = f(x_i^*) \cdot \Delta x. Entonces, el área aproximada A será la suma de todas estas áreas:

A = \sum_{i=0}^{n-1} A_i = \sum_{i=0}^{n-1} f\left(1 + \frac{\Delta x}{2} + i \cdot \Delta x\right) \cdot \Delta x

El límite de esta suma cuando n tiende a infinito nos dará el área exacta bajo la curva.

Paso 5: Tomar el límite cuando n tiende a infinito. Es decir:

\lim_{{n \to \infty}} \sum_{i=0}^{n-1} f\left(1 + \frac{\Delta x}{2} + i \cdot \Delta x\right) \cdot \Delta x

Para calcular el límite de esta suma, podemos utilizar el teorema fundamental del cálculo o notar que la función f(x) = 4 - x^2 es continua en el intervalo [1,2] y, por lo tanto, integrable. Por lo tanto, el área exacta bajo la curva se puede calcular mediante la integral definida de la función en el intervalo [1,2]:

A = \int_{1}^{2} (4 - x^2) \, dx

Ahora podemos proceder a calcular la integral para obtener el área exacta:

\int_{1}^{2} (4 - x^2) \, dx = \left[ 4x - \frac{x^3}{3} \right]_{1}^{2}

Evaluamos la integral en los límites de integración:

= \left[ 4(2) - \frac{(2)^3}{3} \right] - \left[ 4(1) - \frac{(1)^3}{3} \right]

= \left[ 8 - \frac{8}{3} \right] - \left[ 4 - \frac{1}{3} \right]

= \left[ \frac{24}{3} - \frac{8}{3} \right] - \left[ \frac{12}{3} - \frac{1}{3} \right]

= \frac{16}{3} - \frac{11}{3}

= \frac{5}{3}

Entonces, el área exacta bajo la curva f(x) = 4 - x^2 en el intervalo [1,2] es \frac{5}{3}.

\textbf{Respuesta:} El área exacta bajo la curva mediante sumas de Riemann de f(x) = 4 - x^2 en el intervalo [1,2] es \frac{5}{3}.

Frequently asked questions (FAQs)
Math question: "If log(base b) of x equals y, what is the value of b when x = 16 and y = 2?"
+
Math question: Graph the inequality 2x + 3y < 12. What are the coordinates of a point that satisfies the inequality?
+
What is the measure of an angle in radians if it is 90 degrees?
+
New questions in Mathematics
-8+3/5
How many percent is one second out a 24 hour?
6. Among 100 of products there are 20 rejects. We will randomly select 10 of products. The random variable X indicates the number of rejects among the selected products. Determine its distribution.
30. In 8 s, a car that starts from rest and moves with uniformly accelerated motion has achieved a speed of 72m/s. How much space must it travel to reach a speed of 90m/s? Sunshine: 450 m
Suppose 56% of politicians are lawyers if a random sample of size 564 is selected, what is the probability that the proportion of politicians who are lawyers will differ from the total politicians proportions buy more than 4% round your answer to four decimal places
Mrs. Emily saved RM10000 in a bank. At the end of the eighth year, the amount of money accumulated amounted to RM19992.71. If the bank pays an annual interest of x% for a year compounded every 6 months. Calculate the value of x.
. What will be the osmotic pressure of a solution that was prepared at 91°F by dissolving 534 grams of aluminum hydroxide in enough water to generate 2.784 ml of solution.
During a fishing trip Alex notices that the height h of the tide (in metres) is given by h=1−(1/2)*cos(πt/6) where t is measued in hours from the start of the trip. (a) Enter the exact value of h at the start of the trip in the box below.
show step by step simplification: (¬𝑑∨((¬b∧c)∨(b∧¬c)))∧((𝑎 ∧ 𝑏) ∨ (¬𝑎 ∧ ¬𝑏))∧(¬𝑐∨((¬𝑑∧𝑎)∨(𝑑∧¬𝑎)))
Nice's central library building is considered one of the most original in the world, as it is a mix between a sculpture and a work of habitable architecture. It was called La Tête Carrée and is made up of part of a bust that supports a cube divided into five floors. It is known that the building has a total height of approximately 30 meters. It admits that the cubic part of the sculpture is parallel to the floor and has a volume of 2744 meters3 Calculate, in meters, the height of the bust that supports the cube. Displays all the calculations you made.
I. Order to add 40.25+1.31+.45 what is the first action to do ?
7=-4/3y -1
Fill in the P(X-x) values to give a legitimate probability distribution for the discrete random variable X, whose possible values are -5 ,3 , 4, 5 , and 6.
a survey showed that 3 out of 7 voters would vote in an election. based on this survey, how many people would vote in a city with 25,000 people?
In an orchard there are 360 trees and they are distributed in 9 rows with the same number of trees in each row. 2 are rows of orange trees, 4 of apple trees and the rest are of pear trees. What fraction of the trees in the orchard are of each type of fruit tree? How many trees of each type are there?
A membership to the gym cost $25 per person in 1995. The membership cost has increased by an average $6 per person for each year since 1995. Write a linear equation for the cost of a gym membership for one person since 1995. What is the cost of a gym membership in 2009?
x(squared) -8x=0
Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.
To apply a diagnostic test, in how many ways can 14 students be chosen out of 25? if the order does not matter
A plant found at the bottom of a lake doubles in size every 10 days. Yeah It is known that in 300 days it has covered the entire lake, indicate how many days it will take to cover the entire lake four similar plants.