Question

consider the parabola of equation y=(a-3)x^2-2(a+1)x+a-1 with a E R. Determine for which values of a this parabola: 1) does not intersect the x axis at any point; 2) has the vertex with a negative abscissa; 3) has the concavity facing downwards; 4) passes through point P (-2; 4).

189

likes
944 views

Answer to a math question consider the parabola of equation y=(a-3)x^2-2(a+1)x+a-1 with a E R. Determine for which values of a this parabola: 1) does not intersect the x axis at any point; 2) has the vertex with a negative abscissa; 3) has the concavity facing downwards; 4) passes through point P (-2; 4).

Expert avatar
Hester
4.8
116 Answers
1) Per determinare per quali valori di a la parabola non interseca l'asse x in nessun punto, dobbiamo considerare il discriminante della funzione quadratica. Se il discriminante è negativo, la parabola non interseca l'asse x.

Il discriminante è dato da:

\Delta = b^2 - 4ac

Dove, nell'equazione y = (a-3)x^2 - 2(a+1)x + a - 1, abbiamo a = (a-3), b = -2(a+1), e c = a-1.

Sostituendo questi valori nell'equazione del discriminante otteniamo:

\Delta = (-2(a+1))^2 - 4(a-3)(a-1)

Espandendo e semplificando otteniamo:

\Delta = 4(a^2 + 2a + 1) - 4(a^2 - 4a + 3)

\Delta = 4a^2 + 8a + 4 - 4a^2 + 16a - 12

\Delta = 24a - 8

Perché la parabola non intersechi l'asse x in nessun punto, il discriminante deve essere negativo, quindi:

24a - 8 < 0

24a < 8

a < \frac{1}{3}

Quindi, la parabola non interseca l'asse x in nessun punto per a < \frac{1}{3}.

2) Per determinare per quali valori di a la parabola ha il vertice con ascissa negativa, dobbiamo trovare l'ascissa del vertice della parabola. L'ascissa del vertice di una parabola di equazione y = ax^2 + bx + c è data da x = -\frac{b}{2a}.

Nel nostro caso, l'ascissa del vertice è:

x = -\frac{-2(a+1)}{2(a-3)} = \frac{a+1}{a-3}

Per fare in modo che l'ascissa del vertice sia negativa, dobbiamo risolvere l'inequazione:

\frac{a+1}{a-3} < 0

La quale dà come soluzione:

-1 < a < 3

Quindi, la parabola ha il vertice con ascissa negativa per -1 < a < 3.

3) Per determinare per quali valori di a la parabola ha la concavità rivolta verso il basso, dobbiamo considerare il coefficiente del termine x^2, che è a-3. Per avere la concavità rivolta verso il basso, il coefficiente a-3 deve essere negativo, quindi:

a - 3 < 0

a < 3

Quindi, la parabola ha la concavità rivolta verso il basso per a < 3.

4) Per determinare per quali valori di a la parabola passa per il punto P(-2, 4), dobbiamo sostituire le coordinate x = -2 e y = 4 nell'equazione della parabola e risolvere per a. Quindi abbiamo:

4 = (a-3)(-2)^2 - 2(a+1)(-2) + a - 1

4 = 4(a-3) + 4(a+1) + a - 1

4 = 4a - 12 + 4a + 4 + a - 1

4 = 9a - 9

9 = 9a

a = 1

Quindi, la parabola passa per il punto P(-2, 4) quando a = 1.

**Risposta:**
1) La parabola non interseca l'asse x per a < \frac{1}{3}.
2) La parabola ha il vertice con ascissa negativa per -1 < a < 3.
3) La parabola ha la concavità rivolta verso il basso per a < 3.
4) La parabola passa per il punto P(-2, 4) quando a = 1.

Frequently asked questions (FAQs)
Math question: What is the measure of an angle subtended by a diameter at any point on the circumference of a circle?
+
What is the dot product of vectors A=[2, -3] and B=[4, 5]?
+
Find the integral (∫) of f(x) = 3x^2 - 2x + 5 with respect to x from 0 to 2.
+
New questions in Mathematics
I) Find the directional derivative of 𝑓(𝑥, 𝑦) = 𝑥 sin 𝑦 at (1,0) in the direction of the unit vector that make an angle of 𝜋/4 with positive 𝑥-axis.
If f(x) = 3x 2, what is the value of x so that f(x) = 11?
7273736363-8
Determine the momentum of a 20 kg body traveling at 20 m/s.
Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?
2x+4x=
reduce the expression (7.5x 12)÷0.3
The ninth term of a given geometric progression, with reason q , is 1792, and its fourth term is 56. Thus, calculate the fourth term of another geometric progression, whose ratio is q +1 and whose first term is equal to the first term of the first P.G. described.
89, ÷ 10
3.24 ÷ 82
Let v be the set of all ordered pairs of real numbers and consider the scalar addition and multiplication operations defined by: u+v=(x,y)+(s,t)=(x+s+1,y+t -two) au=a.(x,y)=(ax+a-1,ay-2a+2) It is known that this set with the operations defined above is a vector space. A) calculate u+v is au for u=(-2,3),v=(1,-2) and a=2 B) show that (0,0) #0 Suggestion find a vector W such that u+w=u C) who is the vector -u D) show that axiom A4 holds:-u+u=0
2x2
Determine the Linear function whose graph passes through the points (6, -2) and has slope 3.
Kaya deposits 25,000 into an account that earns 3% interest compounded monthly. How much does Kaya have in the account after 6 years 8 months? Round to the nearest cent. 32,912.50 30,000 29,923.71 30,527.45
In poker, a full house consists of five cards, where two of the cards have the same number (or letter) and the remaining three also have the same number (or letter) as each other (but not as the previous two cards). Use a search engine or Wikipedia to understand the concept better if necessary. In how many different ways can one obtain a full house?
-5x=115
2x-4=8
How much does 7.2 moles of ammonium dichromate weigh? (NH4)2Cr2O7
Paul invites 12 friends to his birthday. He wants to give 15 candies to everyone two. The candies are sold in packs of 25. How many should he buy? packages?
To apply a diagnostic test, in how many ways can 14 students be chosen out of 25? if the order does not matter