Question

consider the parabola of equation y=(a-3)x^2-2(a+1)x+a-1 with a E R. Determine for which values of a this parabola: 1) does not intersect the x axis at any point; 2) has the vertex with a negative abscissa; 3) has the concavity facing downwards; 4) passes through point P (-2; 4).

189

likes
944 views

Answer to a math question consider the parabola of equation y=(a-3)x^2-2(a+1)x+a-1 with a E R. Determine for which values of a this parabola: 1) does not intersect the x axis at any point; 2) has the vertex with a negative abscissa; 3) has the concavity facing downwards; 4) passes through point P (-2; 4).

Expert avatar
Hester
4.8
116 Answers
1) Per determinare per quali valori di a la parabola non interseca l'asse x in nessun punto, dobbiamo considerare il discriminante della funzione quadratica. Se il discriminante è negativo, la parabola non interseca l'asse x.

Il discriminante è dato da:

\Delta = b^2 - 4ac

Dove, nell'equazione y = (a-3)x^2 - 2(a+1)x + a - 1, abbiamo a = (a-3), b = -2(a+1), e c = a-1.

Sostituendo questi valori nell'equazione del discriminante otteniamo:

\Delta = (-2(a+1))^2 - 4(a-3)(a-1)

Espandendo e semplificando otteniamo:

\Delta = 4(a^2 + 2a + 1) - 4(a^2 - 4a + 3)

\Delta = 4a^2 + 8a + 4 - 4a^2 + 16a - 12

\Delta = 24a - 8

Perché la parabola non intersechi l'asse x in nessun punto, il discriminante deve essere negativo, quindi:

24a - 8 < 0

24a < 8

a < \frac{1}{3}

Quindi, la parabola non interseca l'asse x in nessun punto per a < \frac{1}{3}.

2) Per determinare per quali valori di a la parabola ha il vertice con ascissa negativa, dobbiamo trovare l'ascissa del vertice della parabola. L'ascissa del vertice di una parabola di equazione y = ax^2 + bx + c è data da x = -\frac{b}{2a}.

Nel nostro caso, l'ascissa del vertice è:

x = -\frac{-2(a+1)}{2(a-3)} = \frac{a+1}{a-3}

Per fare in modo che l'ascissa del vertice sia negativa, dobbiamo risolvere l'inequazione:

\frac{a+1}{a-3} < 0

La quale dà come soluzione:

-1 < a < 3

Quindi, la parabola ha il vertice con ascissa negativa per -1 < a < 3.

3) Per determinare per quali valori di a la parabola ha la concavità rivolta verso il basso, dobbiamo considerare il coefficiente del termine x^2, che è a-3. Per avere la concavità rivolta verso il basso, il coefficiente a-3 deve essere negativo, quindi:

a - 3 < 0

a < 3

Quindi, la parabola ha la concavità rivolta verso il basso per a < 3.

4) Per determinare per quali valori di a la parabola passa per il punto P(-2, 4), dobbiamo sostituire le coordinate x = -2 e y = 4 nell'equazione della parabola e risolvere per a. Quindi abbiamo:

4 = (a-3)(-2)^2 - 2(a+1)(-2) + a - 1

4 = 4(a-3) + 4(a+1) + a - 1

4 = 4a - 12 + 4a + 4 + a - 1

4 = 9a - 9

9 = 9a

a = 1

Quindi, la parabola passa per il punto P(-2, 4) quando a = 1.

**Risposta:**
1) La parabola non interseca l'asse x per a < \frac{1}{3}.
2) La parabola ha il vertice con ascissa negativa per -1 < a < 3.
3) La parabola ha la concavità rivolta verso il basso per a < 3.
4) La parabola passa per il punto P(-2, 4) quando a = 1.

Frequently asked questions (FAQs)
Question: Simplify (3^4 * 3^2) / 3^3.
+
What is the temperature in Celsius if it's 68°F?
+
Question: "Simplify log base 2 of (x^2 * y^3) - log base 2 of (z^4) + log base 2 of 16, given that x = 4, y = 2, and z = 8."
+
New questions in Mathematics
What is the amount of interest of 75,000 at 3.45% per year, at the end of 12 years and 6 months?
Find the equation of the normal to the curve y=x²+4x-3 at point(1,2)
Exercise 4 - the line (AC) is perpendicular to the line (AB) - the line (EB) is perpendicular to the line (AB) - the lines (AE) and (BC) intersect at D - AC = 2.4 cm; BD = 2.5 cm: DC = 1.5 cm Determine the area of triangle ABE.
58+861-87
4.2x10^_6 convert to standard notation
What is the r.p.m. required to drill a 13/16" hole in mild steel if the cutting speed is 100 feet per minute?
You are planning to buy a car worth $20,000. Which of the two deals described below would you choose, both with a 48-month term? (NB: estimate the monthly payment of each offer). i) the dealer offers to take 10% off the price, then lend you the balance at an annual percentage rate (APR) of 9%, monthly compounding. ii) the dealer offers to lend you $20,000 (i.e., no discount) at an APR of 3%, monthly compounding.
If f(x,y)=6xy^2+3y^3 find (∫3,-2) f(x,y)dx.
prove that if n odd integer then n^2+5 is even
20% of 3500
What’s the slope of a tangent line at x=1 for f(x)=x2. We can find the slopes of a sequence of secant lines that get closer and closer to the tangent line. What we are working towards is the process of finding a “limit” which is a foundational topic of calculus.
Use a pattern to prove that (-2)-(-3)=1
TEST 123123+1236ttttt
In a company dedicated to packaging beer in 750 mL containers, a normal distribution is handled in its packaging process, which registers an average of 745 mL and a standard deviation of 8 mL. Determine: a) The probability that a randomly selected container exceeds 765 mL of beer b) The probability that the beer content of a randomly selected container is between 735 and 755 mL.
The mass of 120 molecules of X2C4 is 9127.2 amu. Identify the unknown atom, X, by finding the atomic mass. The atomic mass of C is 12.01 amu/atom
Translate to an equation and solve. Let x be the unknown number: What number is 52% of 81.
Emile organizes a community dance to raise funds. In addition to paying $300 to rent the room, she must rent chairs at $2 each. The quantity of chairs rented will be equal to the number of tickets sold. She sells tickets for $7 each. How much should she sell to raise money?
Find the symmetric point to a point P = (2,-7,10) with respect to a plane containing a point Po = (3, 2, 2) and perpendicular to a vector u = [1, -3, 2].
g(x)=3(x+8). What is the value of g(12)
15=5(x+3)