Question

consider the parabola of equation y=(a-3)x^2-2(a+1)x+a-1 with a E R. Determine for which values of a this parabola: 1) does not intersect the x axis at any point; 2) has the vertex with a negative abscissa; 3) has the concavity facing downwards; 4) passes through point P (-2; 4).

189

likes
944 views

Answer to a math question consider the parabola of equation y=(a-3)x^2-2(a+1)x+a-1 with a E R. Determine for which values of a this parabola: 1) does not intersect the x axis at any point; 2) has the vertex with a negative abscissa; 3) has the concavity facing downwards; 4) passes through point P (-2; 4).

Expert avatar
Hester
4.8
117 Answers
1) Per determinare per quali valori di a la parabola non interseca l'asse x in nessun punto, dobbiamo considerare il discriminante della funzione quadratica. Se il discriminante è negativo, la parabola non interseca l'asse x.

Il discriminante è dato da:

\Delta = b^2 - 4ac

Dove, nell'equazione y = (a-3)x^2 - 2(a+1)x + a - 1, abbiamo a = (a-3), b = -2(a+1), e c = a-1.

Sostituendo questi valori nell'equazione del discriminante otteniamo:

\Delta = (-2(a+1))^2 - 4(a-3)(a-1)

Espandendo e semplificando otteniamo:

\Delta = 4(a^2 + 2a + 1) - 4(a^2 - 4a + 3)

\Delta = 4a^2 + 8a + 4 - 4a^2 + 16a - 12

\Delta = 24a - 8

Perché la parabola non intersechi l'asse x in nessun punto, il discriminante deve essere negativo, quindi:

24a - 8 < 0

24a < 8

a < \frac{1}{3}

Quindi, la parabola non interseca l'asse x in nessun punto per a < \frac{1}{3}.

2) Per determinare per quali valori di a la parabola ha il vertice con ascissa negativa, dobbiamo trovare l'ascissa del vertice della parabola. L'ascissa del vertice di una parabola di equazione y = ax^2 + bx + c è data da x = -\frac{b}{2a}.

Nel nostro caso, l'ascissa del vertice è:

x = -\frac{-2(a+1)}{2(a-3)} = \frac{a+1}{a-3}

Per fare in modo che l'ascissa del vertice sia negativa, dobbiamo risolvere l'inequazione:

\frac{a+1}{a-3} < 0

La quale dà come soluzione:

-1 < a < 3

Quindi, la parabola ha il vertice con ascissa negativa per -1 < a < 3.

3) Per determinare per quali valori di a la parabola ha la concavità rivolta verso il basso, dobbiamo considerare il coefficiente del termine x^2, che è a-3. Per avere la concavità rivolta verso il basso, il coefficiente a-3 deve essere negativo, quindi:

a - 3 < 0

a < 3

Quindi, la parabola ha la concavità rivolta verso il basso per a < 3.

4) Per determinare per quali valori di a la parabola passa per il punto P(-2, 4), dobbiamo sostituire le coordinate x = -2 e y = 4 nell'equazione della parabola e risolvere per a. Quindi abbiamo:

4 = (a-3)(-2)^2 - 2(a+1)(-2) + a - 1

4 = 4(a-3) + 4(a+1) + a - 1

4 = 4a - 12 + 4a + 4 + a - 1

4 = 9a - 9

9 = 9a

a = 1

Quindi, la parabola passa per il punto P(-2, 4) quando a = 1.

**Risposta:**
1) La parabola non interseca l'asse x per a < \frac{1}{3}.
2) La parabola ha il vertice con ascissa negativa per -1 < a < 3.
3) La parabola ha la concavità rivolta verso il basso per a < 3.
4) La parabola passa per il punto P(-2, 4) quando a = 1.

Frequently asked questions (FAQs)
What is the standard deviation of the set of numbers {2, 4, 6, 8, 10}?
+
What is the value of the cube root function evaluated at x = -8?
+
What is the equation of a parabola that opens downwards and has its vertex at (3, -1)?
+
New questions in Mathematics
Simplify the expression sin³(x)+cos³(x), using trigonometric functions
reduction method 2x-y=13 x+y=-1
10! - 8! =
Solve the math problem 400 students are asked if they live in an apartment and have a pet: Apartment: 120 Both: 30 Pet: 90 The probability that a randomly selected student not living in an apartment has a pet is
All the liquid contained in a barrel is distributed into 96 equal glasses up to its maximum capacity. We want to pour the same amount of liquid from another barrel identical to the previous one into glasses identical to those used, but only up to 3/4 of its capacity. How many more glasses will be needed for this?
2x-4y=-6; -4y+4y=-8
You are planning to buy a car worth $20,000. Which of the two deals described below would you choose, both with a 48-month term? (NB: estimate the monthly payment of each offer). i) the dealer offers to take 10% off the price, then lend you the balance at an annual percentage rate (APR) of 9%, monthly compounding. ii) the dealer offers to lend you $20,000 (i.e., no discount) at an APR of 3%, monthly compounding.
Identify a pattern in the list of numbers.Then use this pattern to find the next number. 37,31,25,19,13
How many anagrams of the word SROMEC there that do not contain STROM, MOST, MOC or CEST as a subword? By subword is meant anything that is created by omitting some letters - for example, the word EMROSCT contains both MOC and MOST as subwords.
According to a survey in a country 27% of adults do not own a credit card suppose a simple random sample of 800 adults is obtained . Describe the sampling distribution of P hat , the sample proportion of adults who do not own a credit card
find x in the equation 2x-4=6
What is 28 marks out of 56 as a percentage
Nice's central library building is considered one of the most original in the world, as it is a mix between a sculpture and a work of habitable architecture. It was called La Tête Carrée and is made up of part of a bust that supports a cube divided into five floors. It is known that the building has a total height of approximately 30 meters. It admits that the cubic part of the sculpture is parallel to the floor and has a volume of 2744 meters3 Calculate, in meters, the height of the bust that supports the cube. Displays all the calculations you made.
Solve the equation: sin(2x) = 0.35 Where 0° ≤ x ≤ 360°. Give your answers to 1 d.p.
(X+2)(x+3)=4x+18
Give an example of a function defined in R that is continuous in all points, except in the set Z of integers.
16.What payment (deposit) made at the end of each month will accumulate to $10473 in 13 years at 7.9% compounded monthly? Enter to the nearest cent (two decimals). Do not use $ signs or commas in the answer.
Given the word WEIRD, determine a four-letter offspring that can be formed with the letters of the word written above
If sin A=0.3 and cos A=0.6, determine the value of tan A.
8/9 divided by 10/6