Question

consider the parabola of equation y=(a-3)x^2-2(a+1)x+a-1 with a E R. Determine for which values of a this parabola: 1) does not intersect the x axis at any point; 2) has the vertex with a negative abscissa; 3) has the concavity facing downwards; 4) passes through point P (-2; 4).

189

likes
944 views

Answer to a math question consider the parabola of equation y=(a-3)x^2-2(a+1)x+a-1 with a E R. Determine for which values of a this parabola: 1) does not intersect the x axis at any point; 2) has the vertex with a negative abscissa; 3) has the concavity facing downwards; 4) passes through point P (-2; 4).

Expert avatar
Hester
4.8
116 Answers
1) Per determinare per quali valori di a la parabola non interseca l'asse x in nessun punto, dobbiamo considerare il discriminante della funzione quadratica. Se il discriminante è negativo, la parabola non interseca l'asse x.

Il discriminante è dato da:

\Delta = b^2 - 4ac

Dove, nell'equazione y = (a-3)x^2 - 2(a+1)x + a - 1, abbiamo a = (a-3), b = -2(a+1), e c = a-1.

Sostituendo questi valori nell'equazione del discriminante otteniamo:

\Delta = (-2(a+1))^2 - 4(a-3)(a-1)

Espandendo e semplificando otteniamo:

\Delta = 4(a^2 + 2a + 1) - 4(a^2 - 4a + 3)

\Delta = 4a^2 + 8a + 4 - 4a^2 + 16a - 12

\Delta = 24a - 8

Perché la parabola non intersechi l'asse x in nessun punto, il discriminante deve essere negativo, quindi:

24a - 8 < 0

24a < 8

a < \frac{1}{3}

Quindi, la parabola non interseca l'asse x in nessun punto per a < \frac{1}{3}.

2) Per determinare per quali valori di a la parabola ha il vertice con ascissa negativa, dobbiamo trovare l'ascissa del vertice della parabola. L'ascissa del vertice di una parabola di equazione y = ax^2 + bx + c è data da x = -\frac{b}{2a}.

Nel nostro caso, l'ascissa del vertice è:

x = -\frac{-2(a+1)}{2(a-3)} = \frac{a+1}{a-3}

Per fare in modo che l'ascissa del vertice sia negativa, dobbiamo risolvere l'inequazione:

\frac{a+1}{a-3} < 0

La quale dà come soluzione:

-1 < a < 3

Quindi, la parabola ha il vertice con ascissa negativa per -1 < a < 3.

3) Per determinare per quali valori di a la parabola ha la concavità rivolta verso il basso, dobbiamo considerare il coefficiente del termine x^2, che è a-3. Per avere la concavità rivolta verso il basso, il coefficiente a-3 deve essere negativo, quindi:

a - 3 < 0

a < 3

Quindi, la parabola ha la concavità rivolta verso il basso per a < 3.

4) Per determinare per quali valori di a la parabola passa per il punto P(-2, 4), dobbiamo sostituire le coordinate x = -2 e y = 4 nell'equazione della parabola e risolvere per a. Quindi abbiamo:

4 = (a-3)(-2)^2 - 2(a+1)(-2) + a - 1

4 = 4(a-3) + 4(a+1) + a - 1

4 = 4a - 12 + 4a + 4 + a - 1

4 = 9a - 9

9 = 9a

a = 1

Quindi, la parabola passa per il punto P(-2, 4) quando a = 1.

**Risposta:**
1) La parabola non interseca l'asse x per a < \frac{1}{3}.
2) La parabola ha il vertice con ascissa negativa per -1 < a < 3.
3) La parabola ha la concavità rivolta verso il basso per a < 3.
4) La parabola passa per il punto P(-2, 4) quando a = 1.

Frequently asked questions (FAQs)
Math question: What is the amplitude and period of the sine function f(x) = sin(x)?
+
Math Question: Find the absolute minimum and maximum values of the function f(x) = x^3 - 6x^2 - 15x + 10 on the interval [0, 5].
+
What is the product of 356 multiplied by 72?
+
New questions in Mathematics
The gross domestic product the gdp for the United States in 2017 was approximately $2.05x10^3. If you wrote this number in standard notation , it would be 205 followed by how many zeros
the value of sin 178°58&#39;
(5-(4-3)*3)-(8+5))
To celebrate the five-year anniversary of a consultancy specializing in information technology, the administrator decided to draw 3 different qualification courses among its 10 employees. Considering that the same employee cannot be drawn more than once, the total number of different ways of drawing among employees is:
2.3/-71.32
Find the derivatives for y=X+1/X-1
4x/2+5x-3/6=7/8-1/4-x
What is the total tolerance for a dimension from 1.996" to 2.026*?
Determine the general equation of the straight line that passes through the point P (2;-3) and is parallel to the straight line with the equation 5x – 2y 1 = 0:
The average number of babies born at a hospital is 6 per hour. What is the probability that three babies are born during a particular 1 hour period?
20% of 3500
Next%C3%B3n%2C+we+are+given+a+series+of+Tri%C3%A1angles+Right%C3%A1angles+%3Cbr%2F%3Ey+in+each+one+of+them+ are+known+2%28two%29+measurements+of+sides.+%3Cbr%2F%3Elet's+determine+all+trigonom%C3%A9tric+ratios.
We have two distributions: A (M = 66.7, 95% CI = [60.3, 67.1]) / B (M = 71.3 95% CI = [67.7, 74.9]). Erin maintains that B is significantly larger than A. Provide your opinion on Erin’s argument and justify your opinion.
We plan to test whether the mean mRNA expression level differs between two strains of yeast, for each of 8,000 genes. We will measure the expression levels of each gene, in n samples of strain 1 and m samples of strain 2. We plan to compute a P-value for each gene, using an unpaired two-sample t-test for each gene (the particular type of test does not matter). a) What are the null hypotheses in these tests (in words)? [2] b) If, in fact, the two strains are identical, how many of these tests do we expect to produce a P-value exceeding 1/4? [2]
A given initial capital in simple interest at the annual rate and for 27 months produced the accumulated capital of 6600 um if the same capital had been invested at the same rate but during 28 months the said accumulated capital would be increased in an amount corresponding to 0.75% of the initial capital Calculate the initial capital and the annual rate at which it was invested
Write the inequality in the form of a<x<b. |x| < c^2
x²-7x+12=0
Solve the following system of equations using substitution. y=-4x- 11. 3x+7y=-2
The perimeter of a rectangular rug is 42 feet. The width is 9 feet. What is the length?
-1/3x+15=18