Answer: \frac{(x+5)}{3} Step-by-step solution, Assume f\left(x\right)=y So y=3x-5 and x=\frac{\left(y+5\right)}{3} So x=\frac{\left(f\left(x\right)+5\right)}{3} So inverse function is \frac{\left(x+5\right)}{3}
Frequently asked questions (FAQs)
What is the value of sin(45°) - cos(60°) + tan(30°) / cot(45°)?
+
What is the value of the constant function f(x) = 7, when x = 5?
+
Question: Consider a function f(x) defined on the closed interval [a, b]. Determine if there exists a maximum or minimum value for f(x) using the Extreme Value Theorem.