Answer: \frac{(x+5)}{3} Step-by-step solution, Assume f\left(x\right)=y So y=3x-5 and x=\frac{\left(y+5\right)}{3} So x=\frac{\left(f\left(x\right)+5\right)}{3} So inverse function is \frac{\left(x+5\right)}{3}
Frequently asked questions (FAQs)
What is the maximum or minimum value of a quadratic function
+
What is the maximum possible value of the function f(x) = x^3 - 4x^2 + 5x - 1 on the interval [0, 3]?
+
What are the x-values of the extrema for the function f(x) = x^3 - 4x^2 + 5x - 2?