Question

Given the fraction ab, if n times the denominator is subtracted from the numerator and n times the numerator from the denominator, 2 is obtained, then said fraction in terms of n will be

56

likes
280 views

Answer to a math question Given the fraction ab, if n times the denominator is subtracted from the numerator and n times the numerator from the denominator, 2 is obtained, then said fraction in terms of n will be

Expert avatar
Sigrid
4.5
115 Answers
\text{1. Start with the fraction } \frac{a}{b} \text{ and set up the given condition:} \\\frac{a - nb}{b - na} = 2

\text{2. Cross-multiply to clear the fraction: } \\a - nb = 2(b - na)

\text{3. Distribute and simplify both sides:} \\a - nb = 2b - 2na

\text{4. Rearrange to collect all terms involving } a \text{ on one side and terms involving } b \text{ on the other:} \\a + 2na = 2b + nb

\text{5. Factor out common factors from both sides: } \\a(1 + 2n) = b(2 + n)

\text{6. Isolate } \frac{a}{b} \text{:} \\\frac{a}{b} = \frac{2 + n}{1 + 2n}

\text{7. Therefore, the fraction } \frac{a}{b} \text{ in terms of } n \text{ is } \frac{2 + n}{1 + 2n}

Frequently asked questions FAQs
Find the equation of an ellipse with a major axis of length 8 units and a minor axis of length 6 units.
+
Math question: What is the equation of a basic horizontal line graph passing through the point 3,5?
+
What is the chain rule used to differentiate fg(h(x)) where f, g, and h are differentiable functions?
+
New questions in Mathematics
Let X be a discrete random variable with range {1, 3, 5} and whose probability function is fx = PX=x. If it is known that PX=1 = 0.1 and PX=3 = 0.3. What is the value of PX=5?
5 people can complete a task in 72 hours. How many people are needed to complete the task in 60 hours.
Determine the equations of the lines that pass through the following points P1 2;1 and p2 4;1
[36,000,0000.000003^2]divided0.00000006
You are planning to buy a car worth 20,000.Whichofthetwodealsdescribedbelowwouldyouchoose,bothwitha48monthterm?(NB:estimatethemonthlypaymentofeachoffer).i)thedealerofferstotake1020,000 i.e.,nodiscount at an APR of 3%, monthly compounding.
Mrs. Emily saved RM10000 in a bank. At the end of the eighth year, the amount of money accumulated amounted to RM19992.71. If the bank pays an annual interest of x% for a year compounded every 6 months. Calculate the value of x.
Substitute a=2 and b=-3 and c=-4 to evaluate 2ac/2b2a
Find all real numbers x that satisfy the equation \sqrt{x^2-2}=\sqrt{3-x}
19) If the temperature of -8°C decreases by 12°C, how much will it be? a)-20°C -4°C c) 4°C d) 20°C
Determine the Linear function whose graph passes through the points 6,2 and has slope 3.
Calculate the change in internal energy of a gas that receives 16000 J of heat at constant pressure 1.3atm expanding from 0.100 m3 to 0.200 m3. Question 1Answer to. 7050J b. 2125J c. None of the above d. 2828J and. 10295 J
nI Exercises 65-68, the latitudes of a pair of cities are given. Assume that one city si directly south of the other and that the earth is a perfect sphere of radius 4000 miles. Use the arc length formula in terms of degrees to find the distance between the two cities. 65. The North Pole: latitude 90° north Springfield, Illinois: latitude 40° north
2.3 X 0.8
How much does 7.2 moles of ammonium dichromate weigh? NH42Cr2O7
Arturo had hospitalization expenses of 8,300.YourpolicyformedicalexpensesSeniorshaveadeductibleof500 and expenses are paid at a 20% coinsurance. These are the first expenses ever this year, how much will Arturo have to pay in your bill for hospitalization expenses?
Recall that with base- ten blocks, 1 long = 10 units, 1flat = 10 long, and a block = 1 unit. Then what number does 5 flat, 17long and 5 units represent represent ?
y’’ -4y’ +4y = 12x26xe^2x Y0= 1 Y’0=0 Yx=c1y1+c2y2+yp
Two trains leave stations 294 miles apart at the same time and travel toward each other. One train travels at 95 miles per hour while the other travels at 115 miles per hourHow long will it take for the two trains to meet?
I have a complex function I would like to integrate over. I can use two approaches and they should give the same solution. If I want to find the contour integral ∫𝛾𝑧¯𝑑𝑧 for where 𝛾 is the circle |𝑧−𝑖|=3 oriented counterclockwise I get the following: ∫2𝜋0𝑖+3𝑒𝑖𝑡⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯𝑑𝑖+3𝑒𝑖𝑡=∫2𝜋03𝑖𝑖+3𝑒𝑖𝑡𝑒𝑖𝑡𝑑𝑡=18𝜋𝑖 If I directly apply the Residue Theorem, I would get ∫𝛾𝑧¯𝑑𝑧=2𝜋𝑖Res𝑓,𝑧=0=2𝜋𝑖
Construct a set of six pieces of data with​ mean, median, and midrange of 67 and where no two pieces of data are the same.
implemented new rules lin residents. A key component of these rules is that residents should work no more than 80 hours per we of weekly hours worked in 2022 by a sample of residents at the Tidelands Medical Center. UsetDistri\n848684867982878184787486\n\nB.Whatisthepointestimateofthepopulationstandarddeviation?\nNote:Roundyouranswerto2decimalplaces.\nc.Whatisthemarginoferrorfora90):\u003Cbr>\u003Cbr>1. List the data: \\(84, 86, 84, 86, 79, 82, 87, 81, 84, 78, 74, 86\\).\u003Cbr>\u003Cbr>2. Calculate the sample mean (\\(\\bar{x}\\)): \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\bar{x} = \\frac{84 + 86 + 84 + 86 + 79 + 82 + 87 + 81 + 84 + 78 + 74 + 86}{12} = \\frac{991}{12} = 82.58\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Apply the standard deviation formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{\\frac{\\sum (x_i - \\bar{x})^2}{n - 1}}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{\\frac{(84-82.58)^2 + (86-82.58)^2 + \\ldots + (86-82.58)^2}{11}}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{\\frac{1.98 + 11.78 + 1.98 + 11.78 + 13.04 + 0.3364 + 20.57 + 2.48 + 1.98 + 21.02 + 73.73 + 11.78}{11}}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{\\frac{40.54 + 36.84 + 2.48 + 34.82}{11}}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{\\frac{151.46}{11}}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s=\\sqrt{15.5379}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s\\approx3.94\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>C. Margin of Error:\u003Cbr>\u003Cbr>1. Determine the critical value for 90% confidence with \\( n = 12 \\) which results in degrees of freedom \\( df = 11 \\). Use the t-distribution table.\u003Cbr>\u003Cbr>2. Critical value (\\(t^*\\)) for 90% confidence interval with \\(df = 11\\) is approximately 1.796.\u003Cbr>\u003Cbr>3. Calculate the margin of error:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>E=t^*\\times\\frac{s}{\\sqrt{n}}=1.796\\times\\frac{3.94}{\\sqrt{12}}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>E=1.796\\times1.137\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>E\\approx2.04\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>D. Develop a 90% Confidence Interval:\u003Cbr>\u003Cbr>1. Use the point estimate, margin of error, and sample mean:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\bar{x}\\pm E=82.58\\pm2.04\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Calculate the confidence interval:\u003Cbr>\u003Cbr>Lower limit: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>82.58-2.04=80.54\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Upper limit: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>82.58+2.04=84.62\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Round each bound to 2 decimal places: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(80.54,84.62)\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Answer: 90% Confidence Interval = \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(80.54,84.62)\u003C/math-field>\u003C/math-field>",422,84,"in-2003-the-accreditation-council-for-graduate-medical-education-acgme-implemented-new-rules-lin-residents-a-key-component-of-these-rules-is-that-residents-should-work-no-more-than-80-hours-per-we",{"id":44,"category":36,"text_question":45,"photo_question":38,"text_answer":46,"step_text_answer":8,"step_photo_answer":8,"views":47,"likes":48,"slug":49},538093,"FIND THE AREA UNDER THE Standard Normal Distribution: To the right of z = - 2.01","To find the area to the right of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field> on a standard normal distribution:\u003Cbr />\n\u003Cbr />\n1. We need to find the cumulative distribution function (CDF) value for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field>. \u003Cbr />\n\u003Cbr />\n2. Using the standard normal distribution table or a calculator, we find that the CDF value for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field> is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>0.0222\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n3. Since this value represents the area to the left of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field>, the area to the right is:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1 - 0.0222 = 0.9778\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore, the area under the standard normal distribution curve to the right of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>0.9778\u003C/math-field>\u003C/math-field>.",878,176,"find-the-area-under-the-standard-normal-distribution-to-the-right-of-z-2-01",{"id":51,"category":36,"text_question":52,"photo_question":38,"text_answer":53,"step_text_answer":8,"step_photo_answer":8,"views":54,"likes":55,"slug":56},538092,"2²","The expression $2^2$ represents 2 raised to the power of 2, which is $2 \\times 2 = 4$. Therefore, the answer is 4.",898,180,"2",{"id":58,"category":36,"text_question":59,"photo_question":38,"text_answer":60,"step_text_answer":8,"step_photo_answer":8,"views":61,"likes":62,"slug":63},538090,"The ratio of Adam’s weight to John’s weight is 6:5. If Adam weighs 48 KG, find John’s weight.","Let Adam's weight be represented as \\( A \\) and John's weight as \\( J \\). \u003Cbr />\n\u003Cbr />\nGiven the ratio is 6:5, we have:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{A}{J} = \\frac{6}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nWe know Adam's weight \\( A = 48 \\, \\text{KG} \\).\u003Cbr />\n\u003Cbr />\nSo substitute \\( A \\) in the ratio:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{48}{J} = \\frac{6}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nBy cross-multiplying:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 6J = 5 \\times 48 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 6J = 240 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nNow, solve for \\( J \\):\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> J = \\frac{240}{6} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> J = 40 \\, \\text{KG} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore, John's weight is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>40 \\text{ KG}\u003C/math-field>\u003C/math-field>.",591,118,"the-ratio-of-adam-s-weight-to-john-s-weight-is-6-5-if-adam-weighs-48-kg-find-john-s-weight",{"id":65,"category":36,"text_question":66,"photo_question":38,"text_answer":67,"step_text_answer":8,"step_photo_answer":8,"views":68,"likes":69,"slug":70},538089,"David cuts a rope 60 m long into two pieces in the ratio 2:3. What is the length of the shorter piece of rope?","1. Let the lengths of the two pieces of rope be represented as $2x$ and $3x$, since they are in the ratio 2:3.\u003Cbr />\n \u003Cbr />\n2. According to the problem, the sum of the lengths of the two pieces is 60 m, so:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x + 3x = 60 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Combine like terms:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 5x = 60 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Solve for $x$:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{60}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 12 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. The length of the shorter piece of rope is $2x$, so:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 2 \\times 12 \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 24 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Therefore, the length of the shorter piece of rope is:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 24 \\, \\text{m} \u003C/math-field>\u003C/math-field>",1166,233,"david-cuts-a-rope-60-m-long-into-two-pieces-in-the-ratio-2-3-what-is-the-length-of-the-shorter-piece-of-rope",{"id":72,"category":36,"text_question":73,"photo_question":38,"text_answer":74,"step_text_answer":8,"step_photo_answer":8,"views":75,"likes":76,"slug":77},538088,"Breanne made pineapple drinks by mixing pineapple syrup and water in the ratio 2:7. If she used 4 L of pineapple syrup, how much water did she use?","1. The ratio of pineapple syrup to water is 2:7. This means for every 2 parts of syrup, there are 7 parts of water.\u003Cbr />\n2. Breanne used 4 L of pineapple syrup. Set up the proportion:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{2}{7} = \\frac{4}{x} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n where \\( x \\) is the amount of water used.\u003Cbr />\n\u003Cbr />\n3. Cross-multiply to solve for \\( x \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 7 \\cdot 4 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 28 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Solve for \\( x \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{28}{2} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Calculate:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 14 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Therefore, Breanne used 14 L of water. \u003Cbr />\n\u003Cbr />\nAnswer: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>14 \\text{ L}\u003C/math-field>\u003C/math-field>",783,157,"breanne-made-pineapple-drinks-by-mixing-pineapple-syrup-and-water-in-the-ratio-2-7-if-she-used-4-l-of-pineapple-syrup-how-much-water-did-she-use",{"id":79,"category":36,"text_question":80,"photo_question":38,"text_answer":81,"step_text_answer":8,"step_photo_answer":8,"views":82,"likes":83,"slug":84},538087,"y=-2(4)^x+1 +1 describe transformation","Solution:\u003Cbr />\n1. Given function:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = -2(4)^{x+1} + 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Base function:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = 4^x\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Identify transformations step-by-step:\u003Cbr />\n - **Translation horizontally**: The function has \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(x+1)\u003C/math-field>\u003C/math-field> as the exponent instead of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>. This indicates a horizontal shift to the left by 1 unit.\u003Cbr />\n - **Vertical stretch and reflection**: The coefficient before \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4\u003C/math-field>\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - **Vertical stretch**: The factor \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2\u003C/math-field>\u003C/math-field> indicates that the function is stretched vertically by a factor of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - **Reflection**: The negative sign indicates a reflection across the x-axis.\u003Cbr />\n - **Vertical translation**: The \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>+1\u003C/math-field>\u003C/math-field> outside the function indicates a vertical shift upwards by 1 unit.\u003Cbr />\n\u003Cbr />\n4. Describe the complete transformation:\u003Cbr />\n - The function \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = 4^x\u003C/math-field>\u003C/math-field> undergoes the following transformations: a horizontal shift to the left by 1 unit, a vertical stretch by a factor of 2, reflection across the x-axis, and finally a vertical shift upwards by 1 unit.",1255,251,"y-2-4-x-1-1-describe-transformation",{"id":86,"category":36,"text_question":87,"photo_question":38,"text_answer":88,"step_text_answer":8,"step_photo_answer":8,"views":89,"likes":90,"slug":91},538086,"Add the polynomials g(x)=x3-2x2+3x-1+4x2-x+2","Solution: \u003Cbr />\n1. Write down the given polynomials:\u003Cbr />\n- First polynomial: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>g(x) = x^3 - 2x^2 + 3x - 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Second polynomial: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x^2 - x + 2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Align and add the polynomials term by term:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>g(x) = x^3 - 2x^2 + 3x - 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x^2 - x + 2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Add the corresponding like terms:\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^2\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2x^2 + 4x^2 = 2x^2\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x - x = 2x\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For constant terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-1 + 2 = 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. The resulting polynomial after addition is:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3 + 2x^2 + 2x + 1\u003C/math-field>\u003C/math-field>",739,148,"add-the-polynomials-g-x-x3-2x2-3x-1-4x2-x-2",{"id":93,"category":36,"text_question":94,"photo_question":38,"text_answer":95,"step_text_answer":8,"step_photo_answer":8,"views":96,"likes":97,"slug":98},538085,"R=3m. Calculate the volume of the sphere. Round to the nearest tenth if necessary","1. The formula for the volume of a sphere is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi R^3 \u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. Substitute the given radius \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> R = 3 \\, \\text{m} \u003C/math-field>\u003C/math-field> into the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi (3)^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 3^3 = 27 \u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Thus, the volume becomes:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi \\times 27 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify the expression:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4 \\times 27}{3} \\pi = 36 \\pi \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Use the approximation \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\pi \\approx 3.1416 \u003C/math-field>\u003C/math-field> :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 36 \\times 3.1416 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. Calculate the approximate volume:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V\\approx113.0973\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>8. Round to the nearest tenth:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 113.1 \\, \\text{m}^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Therefore, the volume of the sphere is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 113.1 \\, \\text{m}^3 \u003C/math-field>\u003C/math-field> .",1203,241,"r-3m-calculate-the-volume-of-the-sphere-round-to-the-nearest-tenth-if-necessary",{"id":100,"category":36,"text_question":101,"photo_question":38,"text_answer":102,"step_text_answer":8,"step_photo_answer":8,"views":103,"likes":104,"slug":105},538084,"Width of 12 in. Calculate the volume of the sphere. Round to the nearest tenth if necessary","1. Identify the radius of the sphere. Given the width is 12 inches, the diameter is 12 inches. Therefore, the radius is half of the diameter:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> r = \\frac{12}{2} = 6 \\, \\text{in} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Use the formula for the volume of a sphere:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi r^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute the radius into the formula:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi (6)^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Calculate:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi \\times 216 = \\frac{864}{3} \\pi = 288 \\pi \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Approximate using \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\pi \\approx 3.1416 \u003C/math-field>\u003C/math-field>:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 288 \\times 3.1416 = 904.8 \\, \\text{in}^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. The volume of the sphere, rounded to the nearest tenth, is approximately:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 904.8 \\, \\text{in}^3 \u003C/math-field>\u003C/math-field>",278,56,"width-of-12-in-calculate-the-volume-of-the-sphere-round-to-the-nearest-tenth-if-necessary",{"id":107,"category":36,"text_question":108,"photo_question":38,"text_answer":109,"step_text_answer":8,"step_photo_answer":8,"views":110,"likes":111,"slug":112},538083,"Calculate the volume (to the nearest tenth of a cubic centimeter) of a golf ball whose diameter is 4.267cm","1. The formula for the volume of a sphere is given by \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi r^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. The diameter of the golf ball is given as 4.267 cm, so the radius is half of that: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>r = \\frac{4.267}{2} = 2.1335 \\, \\text{cm}\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>3. Substitute the radius into the volume formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi (2.1335)^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Calculate the cube of the radius: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(2.1335)^3 = 9.707432537375\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>5. Substitute this back into the formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V=\\frac{4}{3}\\pi\\times9.707432537375\\approx40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>6. The volume of the golf ball is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .",1440,288,"calculate-the-volume-to-the-nearest-tenth-of-a-cubic-centimeter-of-a-golf-ball-whose-diameter-is-4-267cm",{"id":114,"category":36,"text_question":115,"photo_question":38,"text_answer":116,"step_text_answer":8,"step_photo_answer":8,"views":117,"likes":41,"slug":118},538082,"Find the length of each base edge (to the nearest tenth of a meter) of the 24m tall glass square pyramids of the Muttart Conservatory in Alberta, Canada, if each contains 5280m^3 of space","1. Volume V of a square pyramid is given by the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{1}{3} B h\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>where B is the area of the base and h is the height of the pyramid.\u003Cbr>\u003Cbr>2. Given that the height h = 24 m and the volume V = 5280 m^3.\u003Cbr>\u003Cbr>3. The base is square, so if the side length of the base is s, then:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>B = s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Substituting into the volume formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = \\frac{1}{3} s^2 \\times 24\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify and solve for s^2:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = 8 s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s^2 = \\frac{5280}{8} = 660\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Solve for s:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{660} \\approx 25.7\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. To find the length of each base edge to the nearest tenth of a meter, compute:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s \\approx 25.7 \\, \\text{m}\u003C/math-field>\u003C/math-field>",418,"find-the-length-of-each-base-edge-to-the-nearest-tenth-of-a-meter-of-the-24m-tall-glass-square-pyramids-of-the-muttart-conservatory-in-alberta-canada-if-each-contains-5280m-3-of-space",{"id":120,"category":36,"text_question":121,"photo_question":38,"text_answer":122,"step_text_answer":8,"step_photo_answer":8,"views":123,"likes":124,"slug":125},538081,"An observer is 150 meters away\n distance of a hot air balloon online\n straight line at ground level. From your position,\n measures an elevation angle of 40° up to\n the base of the balloon. At what height is\n find the hot air balloon?","Solution:\u003Cbr />\n1. Dado:\u003Cbr />\n- Distancia horizontal desde el observador hasta la base del globo: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>d = 150 \\ m\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Ángulo de elevación: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\theta = 40^{\\circ}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Usamos la función tangente para encontrar la altura \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h\u003C/math-field>\u003C/math-field> del globo aerostático. La tangente de un ángulo en un triángulo rectángulo es la razón entre la altura y la distancia horizontal:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(\\theta) = \\frac{h}{d}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Sustituimos los valores conocidos en la ecuación:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(40^{\\circ}) = \\frac{h}{150}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Resolvemos para \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h = 150 \\times \\tan(40^{\\circ})\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Calculamos el valor numérico:\u003Cbr />\n* Usando una calculadora, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(40^{\\circ}) \\approx 0.8391\u003C/math-field>\u003C/math-field>\u003Cbr />\n* Entonces: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h \\approx 150 \\times 0.8391 = 125.865 \\ m\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nLa altura del globo aerostático es aproximadamente \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>125.865 \\ m\u003C/math-field>\u003C/math-field>.",667,133,"an-observer-is-150-meters-away-distance-of-a-hot-air-balloon-online-straight-line-at-ground-level-from-your-position-measures-an-elevation-angle-of-40-up-to-the-base-of-the-balloon-at-what-hei",{"id":127,"category":36,"text_question":128,"photo_question":38,"text_answer":129,"step_text_answer":8,"step_photo_answer":8,"views":130,"likes":131,"slug":132},538080,"A plane ticket has gone up 18%, now costing $4,720. How much did it cost before the increase?","\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\text{Solution:}\u003C/math-field>\u003C/math-field>\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field> be the original price of the plane ticket.\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field> increased by 18% means the new price is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P + 0.18P = 1.18P\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n2. Set up the equation based on the problem statement:\u003Cbr />\n- The new price \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>= 4,720\u003C/math-field>\u003C/math-field>.\u003Cbr />\n- Therefore, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1.18P = 4,720\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n3. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field>:\u003Cbr />\n- Divide both sides by 1.18 to isolate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field>.\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P = \\frac{4,720}{1.18}\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n4. Calculate:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P \\approx 4,000\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\text{Answer:}\u003C/math-field>\u003C/math-field>\u003Cbr />\n- The original price of the plane ticket was approximately USD 4,000.",726,145,"a-plane-ticket-has-gone-up-18-now-costing-4-720-how-much-did-it-cost-before-the-increase",{"id":134,"category":36,"text_question":135,"photo_question":38,"text_answer":136,"step_text_answer":8,"step_photo_answer":8,"views":137,"likes":138,"slug":139},538078,"H=8mm, r=2mm. Calculate the volume of the cone round to the nearest tenth if necessary","1. Use the formula for the volume of a cone: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi r^2 H \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Substitute the given values: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> H = 8 \\, \\text{mm}, \\, r = 2 \\, \\text{mm} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (2)^2 (8) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate \\( (2)^2 \\):\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> (2)^2 = 4 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Substitute and compute:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (4)(8) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (32) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Calculate the product: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{32}{3} \\pi \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Calculate:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V\\approx33.51032\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. Round to the nearest tenth:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 33.5 \\, \\text{mm}^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>This is the answer: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 33.5 \\, \\text{mm}^3 \u003C/math-field>\u003C/math-field>",631,126,"h-8mm-r-2mm-calculate-the-volume-of-the-cone-round-to-the-nearest-tenth-if-necessary",{"id":141,"category":36,"text_question":142,"photo_question":38,"text_answer":143,"step_text_answer":8,"step_photo_answer":8,"views":144,"likes":145,"slug":146},538076,"Dividing 218 or 172 by the natural number n, you get a remainder of 11. Dividing n by 11, you get a remainder equal to:","** \u003Cbr>\u003Cbr>1. Since dividing 218 by n gives a remainder of 11, 218 - 11 = 207 is divisible by n : \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>207\\equiv0\\pmod{n}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Similarly, dividing 172 by n gives a remainder of 11, so 172 - 11 = 161 is divisible by n :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>161\\equiv0\\pmod{n}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. n must be a common divisor of 207 and 161. Find the greatest common divisor of 207 and 161:\u003Cbr>\u003Cbr>- First, find the difference: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 207 - 161 = 46 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Find the prime factorization of 46:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 46 = 2 \\times 23 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Prime factorization of 161:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 161 = 7 \\times 23 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Common factor is 23.\u003Cbr>\u003Cbr>4. Therefore, the possible value of n should be 23 (since other divisions have factors that don't divide both). Now, divide n = 23 by 11:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 23 \\div 11 = 2 \\, \\text{R} \\, 1 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Thus, the remainder of dividing n by 11 is 1\u003Cbr>\u003Cbr>",1233,247,"dividing-218-or-172-by-the-natural-number-n-you-get-a-remainder-of-11-dividing-n-by-11-you-get-a-remainder-equal-to",{"id":148,"category":36,"text_question":149,"photo_question":38,"text_answer":150,"step_text_answer":8,"step_photo_answer":8,"views":151,"likes":152,"slug":153},538074,"R=24 inches\nCalculate the surface area of the sphere","1. The formula to calculate the surface area of a sphere is given by: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = 4 \\pi R^2 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Substitute the value of the radius \\( R = 24 \\) inches into the formula: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = 4 \\pi (24)^2 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate the square of the radius:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> (24)^2 = 576 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Multiply by 4:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 4 \\times 576 = 2304 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. The surface area is:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>A=2304\\pi=7238.23\u003C/math-field>\u003C/math-field> square inches \u003Cbr>\u003Cbr>Therefore, the surface area of the sphere is 7238.23 square inches.",923,185,"r-24-inches-calculate-the-surface-area-of-the-sphere",{"id":155,"category":36,"text_question":156,"photo_question":38,"text_answer":157,"step_text_answer":8,"step_photo_answer":8,"views":158,"likes":159,"slug":160},538073,"Andrés's age is three times Quan's.\n plus wins and both ages add up to 69 years. Nillar\n both ages.","Solution:\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field> be the age of Andrés.\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field> be the age of Quan.\u003Cbr />\n\u003Cbr />\n2. Set up the equations based on the problem:\u003Cbr />\n- Andrés is three times as old as Quan: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field>\u003Cbr />\n- The sum of their ages is 69: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a + q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field> into the second equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3q + q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify the equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q = \\frac{69}{4}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Compute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q = 17.25\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Find \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field> using the equation \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3 \\times 17.25\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n8. Compute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 51.75\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore:\u003Cbr />\n- Quan is approximately 17.25 years old.\u003Cbr />\n- Andrés is approximately 51.75 years old.",553,111,"andres-s-age-is-three-times-quan-s-plus-wins-and-both-ages-add-up-to-69-years-nillar-both-ages",{"id":162,"category":36,"text_question":163,"photo_question":38,"text_answer":164,"step_text_answer":8,"step_photo_answer":8,"views":165,"likes":166,"slug":167},538072,"Andrew's age is three times John's plus nine years, and their ages add up to 69 years. Find both ages.","Solution:\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> be Juan's age.\u003Cbr />\n- Andrés' age is then \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n2. Set up the equation for the total age:\u003Cbr />\n- Juan's age \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> plus Andrés' age \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9\u003C/math-field>\u003C/math-field> equals 69.\u003Cbr />\n\u003Cbr />\n3. Equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + (3x + 9) = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify and solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + 3x + 9 = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x + 9 = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x = 60\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 15\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Find Andrés' age:\u003Cbr />\n- Substitute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 15\u003C/math-field>\u003C/math-field> into Andrés' age expression:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9 = 3(15) + 9 = 45 + 9 = 54\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Therefore, the ages are:\u003Cbr />\n- Juan: 15 years\u003Cbr />\n- Andrés: 54 years",531,106,"andrew-s-age-is-three-times-john-s-plus-nine-years-and-their-ages-add-up-to-69-years-find-both-ages",{"id":169,"category":36,"text_question":170,"photo_question":38,"text_answer":171,"step_text_answer":8,"step_photo_answer":8,"views":172,"likes":173,"slug":174},538071,"Solve the following linear equations:\n 1) 5x-3= 3X+7","Solution:\u003Cbr />\n1. Given Equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5x - 3 = 3x + 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Subtract \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x\u003C/math-field>\u003C/math-field> from both sides to simplify:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5x - 3x - 3 = 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Combine like terms:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x - 3 = 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Add 3 to both sides to isolate the term with the variable:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x = 10\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Divide both sides by 2 to solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 5\u003C/math-field>\u003C/math-field>",1382,276,"solve-the-following-linear-equations-1-5x-3-3x-7",{"first":6,"last":176,"prev":8,"next":10},188,{"current_page":6,"from":6,"last_page":176,"links":178,"path":211,"per_page":212,"to":212,"total":213},[179,182,184,186,188,190,192,195,198,201,204,207,209],{"url":6,"label":180,"active":181},"1",true,{"url":10,"label":56,"active":183},false,{"url":13,"label":185,"active":183},"3",{"url":16,"label":187,"active":183},"4",{"url":19,"label":189,"active":183},"5",{"url":22,"label":191,"active":183},"6",{"url":193,"label":194,"active":183},7,"7",{"url":196,"label":197,"active":183},8,"8",{"url":199,"label":200,"active":183},9,"9",{"url":202,"label":203,"active":183},10,"10",{"url":205,"label":206,"active":183},187,"187",{"url":176,"label":208,"active":183},"188",{"url":10,"label":210,"active":183},"Next »","https://api.math-master.org/api/question",20,3743,{"data":215},{"questions":216},[217,221,225,229,233,237,241,245,249,253,257,261,265,269,273,277,281,285,289,293],{"id":218,"category":36,"text_question":219,"slug":220},532051,"Eight acts are scheduled to perform in a variety show how many different ways are there to schedule their appearances show your work","eight-acts-are-scheduled-to-perform-in-a-variety-show-how-many-different-ways-are-there-to-schedule-their-appearances-show-your-work",{"id":222,"category":36,"text_question":223,"slug":224},532082,"Calculate the 6th term of PA whose 1st term is 6.5 and the ratio 5","calculate-the-6th-term-of-pa-whose-1st-term-is-6-5-and-the-ratio-5",{"id":226,"category":36,"text_question":227,"slug":228},532306,"what is 3% of 105?","what-is-3-of-105",{"id":230,"category":36,"text_question":231,"slug":232},532310,"The random variable Y is defined as the sum between two different integers selected at random between -4 and 2 (both included). What are the possible values of the random variable Y? What is the value of P(Y=-3)? And whether it is less than or equal to -5?","the-random-variable-y-is-defined-as-the-sum-between-two-different-integers-selected-at-random-between-4-and-2-both-included-what-are-the-possible-values-of-the-random-variable-y-what-is-the-value",{"id":234,"category":36,"text_question":235,"slug":236},533970,"Two numbers differ by 7, and the sum of their squares is 29. Find the numbers.","two-numbers-differ-by-7-and-the-sum-of-their-squares-is-29-find-the-numbers",{"id":238,"category":36,"text_question":239,"slug":240},534004,"Suppose 50% of the doctors and hospital are surgeons if a sample of 576 doctors is selected what is the probability that the sample proportion of surgeons will be greater than 55% round your answer to four decimal places","suppose-50-of-the-doctors-and-hospital-are-surgeons-if-a-sample-of-576-doctors-is-selected-what-is-the-probability-that-the-sample-proportion-of-surgeons-will-be-greater-than-55-round-your-answer-to",{"id":242,"category":36,"text_question":243,"slug":244},534024,"Analyze the following situation\n\n Juan is starting a new business, he indicates that the price of his product corresponds to p=6000−4x\n , where x\n represent the number of tons produced and sold and p\n It is given in dollars.\n\n According to the previous information, what is the maximum income that Juan can obtain with his new product?","analyze-the-following-situation-juan-is-starting-a-new-business-he-indicates-that-the-price-of-his-product-corresponds-to-p-6000-4x-where-x-represent-the-number-of-tons-produced-and-sold-and-p",{"id":246,"category":36,"text_question":247,"slug":248},534087,"Find the derivatives for y=X+1/X-1","find-the-derivatives-for-y-x-1-x-1",{"id":250,"category":36,"text_question":251,"slug":252},534092,"Subscribers to the FAME magazine revealed the following preferences for three categories: Fashion 30, Athletics 24 and Business 15. Following these frequencies of observation, compute the chi-square test statistic.\r\nAt the 0.05 level of significance, would you conclude they are similar?","subscribers-to-the-fame-magazine-revealed-the-following-preferences-for-three-categories-fashion-30-athletics-24-and-business-15-following-these-frequencies-of-observation-compute-the-chi-square-t",{"id":254,"category":36,"text_question":255,"slug":256},534169,"Find 2 numbers whose sum is 47 and whose subtraction is 13","find-2-numbers-whose-sum-is-47-and-whose-subtraction-is-13",{"id":258,"category":36,"text_question":259,"slug":260},534207,"The price per night of a suite at the Baglioni Hotel in Venice is 1896 euros, VAT included. The VAT in Italy is 25%. The hotel gets a return of 10% out of the price VAT included.\nb) What is the profit value made by the hotel for one","the-price-per-night-of-a-suite-at-the-baglioni-hotel-in-venice-is-1896-euros-vat-included-the-vat-in-italy-is-25-the-hotel-gets-a-return-of-10-out-of-the-price-vat-included-b-what-is-the-profit",{"id":262,"category":36,"text_question":263,"slug":264},534246,"How to do 15 x 3304","how-to-do-15-x-3304",{"id":266,"category":36,"text_question":267,"slug":268},534318,"The population of Pittsburgh, Pennsylvania, fell from 520,117 in 1970 to 305,704 in 2010. Write an exponential function P(t) modeling the population t years after 1970. Round the growth factor to the nearest tem thousandth.","the-population-of-pittsburgh-pennsylvania-fell-from-520-117-in-1970-to-305-704-in-2010-write-an-exponential-function-p-t-modeling-the-population-t-years-after-1970-round-the-growth-factor-to-the",{"id":270,"category":36,"text_question":271,"slug":272},534370,"A car travels 211 miles on 15 gallons of gasoline. The best estimate of the car’s miles per gallon is?","a-car-travels-211-miles-on-15-gallons-of-gasoline-the-best-estimate-of-the-car-s-miles-per-gallon-is",{"id":274,"category":36,"text_question":275,"slug":276},534433,"A natural gas company has a fixed rate of 1,320 pesos plus 1,590 pesos per cubic meter of gas consumed monthly per customer.\n Indicate the cost function to determine the value in pesos of the cubic meters of gas consumed in a month per customer.\n How much did a customer who consumed 18 cubic meters of gas pay?\n If a customer paid 34,710 pesos, how many cubic meters of gas did he consume?","a-natural-gas-company-has-a-fixed-rate-of-1-320-pesos-plus-1-590-pesos-per-cubic-meter-of-gas-consumed-monthly-per-customer-indicate-the-cost-function-to-determine-the-value-in-pesos-of-the-cubic-me",{"id":278,"category":36,"text_question":279,"slug":280},534448,"prove that for sets SS, AA, BB, and CC, where AA, BB, and CC are subsets of SS, the following equality holds:\n\n(A−B)−C=(A−C)−(B−C)","prove-that-for-sets-ss-aa-bb-and-cc-where-aa-bb-and-cc-are-subsets-of-ss-the-following-equality-holds-a-b-c-a-c-b-c",{"id":282,"category":36,"text_question":283,"slug":284},534513,"Given a circle 𝑘(𝑆; 𝑟 = 4 𝑐𝑚) and a line |𝐴𝐵| = 2 𝑐𝑚. Determine and construct the set of all\ncenters of circles that touch circle 𝑘 and have radius 𝑟 = |𝐴𝐵|","given-a-circle-k-s-r-4-cm-and-a-line-ab-2-cm-determine-and-construct-the-set-of-all-centers-of-circles-that-touch-circle-k-and-have-radius-r-ab",{"id":286,"category":36,"text_question":287,"slug":288},534559,"simplify w+[6+(-5)]","simplify-w-6-5",{"id":290,"category":36,"text_question":291,"slug":292},534650,"A rectangular swimming pool has a length of 14 feet, a width of 26 feet and a depth of 5 feet. Round answers to the nearest hundredth as needed.\n\n\n(a) How many cubic feet of water can the pool hold?\n cubic feet\n(b) The manufacturer suggests filling the pool to 95% capacity. How many cubic feet of water is this?\n cubic feet","a-rectangular-swimming-pool-has-a-length-of-14-feet-a-width-of-26-feet-and-a-depth-of-5-feet-round-answers-to-the-nearest-hundredth-as-needed-a-how-many-cubic-feet-of-water-can-the-pool-hold",{"id":294,"category":36,"text_question":295,"slug":296},534694,"An invoice for €2,880 plus default interest of €48.40 was paid on October 28th. Interest rate 5.5%. When was the bill due?","an-invoice-for-2-880-plus-default-interest-of-48-40-was-paid-on-october-28th-interest-rate-5-5-when-was-the-bill-due",{"data":298},{"id":299,"category":36,"slug":300,"text_question":301,"photo_question":8,"text_answer":302,"step_text_answer":8,"step_photo_answer":8,"views":303,"likes":104,"expert":304},536572,"given-the-fraction-ab-if-n-times-the-denominator-is-subtracted-from-the-numerator-and-n-times-the-numerator-from-the-denominator-2-is-obtained-then-said-fraction-in-terms-of-n-will-be","Given the fraction ab, if n times the denominator is subtracted from the numerator and n times the numerator from the denominator, 2 is obtained, then said fraction in terms\n of n will be","\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{1. Start with the fraction } \\frac{a}{b} \\text{ and set up the given condition:} \\\\\\frac{a - nb}{b - na} = 2 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{2. Cross-multiply to clear the fraction: } \\\\a - nb = 2(b - na) \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{3. Distribute and simplify both sides:} \\\\a - nb = 2b - 2na \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{4. Rearrange to collect all terms involving } a \\text{ on one side and terms involving } b \\text{ on the other:} \\\\a + 2na = 2b + nb \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{5. Factor out common factors from both sides: } \\\\a(1 + 2n) = b(2 + n) \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{6. Isolate } \\frac{a}{b} \\text{:} \\\\\\frac{a}{b} = \\frac{2 + n}{1 + 2n} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{7. Therefore, the fraction } \\frac{a}{b} \\text{ in terms of } n \\text{ is } \\frac{2 + n}{1 + 2n} \u003C/math-field>\u003C/math-field>",280,{"id":16,"name":305,"photo":306,"biography":307,"created_at":8,"updated_at":8,"rating":308,"total_answer":309},"Sigrid","https://api.math-master.org/img/experts/4/4.webp","Hi, I'm Neha, and I want to share my journey of falling in love with maths. It all started at my home when I was a curious kid. I can say Maths runs through my veins as my mother is a Maths teacher. Maths problems used to fascinate me a lot since I was a kid.\nBack in Elementary School, I began learning the basics of math like adding, subtracting, and shapes. My teachers saw my interest and encouraged me to explore more. As I moved to High School, math got more exciting with stuff like trigonometry, calculus, and fancier equations. I joined math clubs, made friends who loved math and got better at solving tough problems.\nThen came University, where math turned into a whole new level of amazing. I did my Graduation in Science (with Physics, Chemistry, and Maths as majors) and then completed my Master's (Post Graduation) with Mathematics as my major from Guru Nanak Dev University. My professors taught me advanced topics like Complex analysis, Abstract Algebra, Numerical analysis, and many more and I loved every moment of it. Learning became an adventure.\nAfter finishing university, I started using math in internships and jobs. I worked in a school as a PGT (Post graduate teacher) for a year and then I got the opportunity to tutor international students. I received an International Tutoring certificate as well. And after that, I came to know about the wonderful platform \"MATHMASTER\" where I'm currently working. I am grateful that Mathmaster provided me with a wonderful opportunity to harness and apply my skills in a truly effective manner. It provided me an opportunity to share my knowledge with students and help me improve my problem-solving skills. It's awesome to see how math could solve real problems and make a difference.\nMy journey with maths has been incredible. From those early math puzzles to tackling complex theories, I've grown so much. My maths journey has been amazing. From curious kid to university explorer, I've learned that math is everywhere and can be so much fun. I'll keep using my math skills to make the world a better place and inspire others to embrace the magic of numbers. I hope my story inspires you to never stop exploring because math is a journey that never really ends.",4.5,115,{"data":311},{"questions":312},[313,317,321,325,329,333,337,341,345,349,353,357,361,365,369,373,377,381,385,389],{"id":314,"category":36,"text_question":315,"slug":316},532083,"Let X be a discrete random variable with range {1, 3, 5} and whose probability function is f(x) = P(X = x). If it is known that P(X = 1) = 0.1 and P(X = 3) = 0.3. What is the value of P(X = 5)?","let-x-be-a-discrete-random-variable-with-range-1-3-5-and-whose-probability-function-is-f-x-p-x-x-if-it-is-known-that-p-x-1-0-1-and-p-x-3-0-3-what-is-the-value-of-p-x-5",{"id":318,"category":36,"text_question":319,"slug":320},533918,"5 people can complete a task in 72 hours. How many people are needed to complete the task in 60 hours.","5-people-can-complete-a-task-in-72-hours-how-many-people-are-needed-to-complete-the-task-in-60-hours",{"id":322,"category":36,"text_question":323,"slug":324},533928,"Determine the equations of the lines that pass through the following points\n P1 (2;-1) and p2 (4;-1)","determine-the-equations-of-the-lines-that-pass-through-the-following-points-p1-2-1-and-p2-4-1",{"id":326,"category":36,"text_question":327,"slug":328},533939,"[(36,000,000)(0.000003)^2]divided(0.00000006)","36-000-000-0-000003-2-divided-0-00000006",{"id":330,"category":36,"text_question":331,"slug":332},534041,"You are planning to buy a car worth $20,000. Which of the two deals described below would you choose, both with a 48-month term? (NB: estimate the monthly payment of each offer). i) the dealer offers to take 10% off the price, then lend you the balance at an annual percentage rate (APR) of 9%, monthly compounding. ii) the dealer offers to lend you $20,000 (i.e., no discount) at an APR of 3%, monthly compounding.","you-are-planning-to-buy-a-car-worth-20-000-which-of-the-two-deals-described-below-would-you-choose-both-with-a-48-month-term-nb-estimate-the-monthly-payment-of-each-offer-i-the-dealer-offers",{"id":334,"category":36,"text_question":335,"slug":336},534081,"Mrs. Emily saved RM10000 in a bank. At the end of the eighth year, the amount of money accumulated amounted to RM19992.71. If the bank pays an annual interest of x% for a year compounded every 6 months. Calculate the value of x.","mrs-emily-saved-rm10000-in-a-bank-at-the-end-of-the-eighth-year-the-amount-of-money-accumulated-amounted-to-rm19992-71-if-the-bank-pays-an-annual-interest-of-x-for-a-year-compounded-every-6-month",{"id":338,"category":36,"text_question":339,"slug":340},534124,"Substitute a=2 and b=-3 and c=-4 to evaluate 2ac/(-2b^2-a)","substitute-a-2-and-b-3-and-c-4-to-evaluate-2ac-2b-2-a",{"id":342,"category":36,"text_question":343,"slug":344},534170,"Find all real numbers x that satisfy the equation \\sqrt{x^2-2}=\\sqrt{3-x}","find-all-real-numbers-x-that-satisfy-the-equation-sqrt-x-2-2-sqrt-3-x",{"id":346,"category":36,"text_question":347,"slug":348},534245,"19) If the temperature of -8°C decreases by 12°C, how much will it be?\n\n a)-20°C\n\n -4°C\n\n c) 4°C\n\n d) 20°C","19-if-the-temperature-of-8-c-decreases-by-12-c-how-much-will-it-be-a-20-c-4-c-c-4-c-d-20-c",{"id":350,"category":36,"text_question":351,"slug":352},534419,"Determine the Linear function whose graph passes through the points (6, -2) and has slope 3.","determine-the-linear-function-whose-graph-passes-through-the-points-6-2-and-has-slope-3",{"id":354,"category":36,"text_question":355,"slug":356},534432,"Calculate the change in internal energy of a gas that receives 16000 J of heat at constant pressure (1.3 atm) expanding from 0.100 m3 to 0.200 m3.\n\n Question 1Answer\n to.\n 7050J\n\n b.\n 2125J\n\n c.\n None of the above\n\n d.\n 2828J\n\n and.\n 10295 J","calculate-the-change-in-internal-energy-of-a-gas-that-receives-16000-j-of-heat-at-constant-pressure-1-3-atm-expanding-from-0-100-m3-to-0-200-m3-question-1answer-to-7050j-b-2125j-c-none",{"id":358,"category":36,"text_question":359,"slug":360},534437,"nI Exercises 65-68, the latitudes of a pair of cities are given. Assume that one city si directly south of the other and that the earth is a perfect sphere of radius 4000 miles. Use the arc length formula in terms of degrees to find the distance between the two cities.\n65. The North Pole: latitude 90° north Springfield, Illinois: latitude 40° north","ni-exercises-65-68-the-latitudes-of-a-pair-of-cities-are-given-assume-that-one-city-si-directly-south-of-the-other-and-that-the-earth-is-a-perfect-sphere-of-radius-4000-miles-use-the-arc-length-for",{"id":362,"category":36,"text_question":363,"slug":364},534547,"2.3 X 0.8","2-3-x-0-8",{"id":366,"category":36,"text_question":367,"slug":368},534563,"How much does 7.2 moles of ammonium dichromate weigh? (NH4)2Cr2O7","how-much-does-7-2-moles-of-ammonium-dichromate-weigh-nh4-2cr2o7",{"id":370,"category":36,"text_question":371,"slug":372},534597,"Arturo had hospitalization expenses of $8,300. Your policy for medical expenses\n Seniors have a deductible of $500 and expenses are paid at a 20% coinsurance.\n These are the first expenses ever this year, how much will Arturo have to pay in\n your bill for hospitalization expenses?","arturo-had-hospitalization-expenses-of-8-300-your-policy-for-medical-expenses-seniors-have-a-deductible-of-500-and-expenses-are-paid-at-a-20-coinsurance-these-are-the-first-expenses-ever-this-y",{"id":374,"category":36,"text_question":375,"slug":376},534612,"Recall that with base- ten blocks, 1 long = 10 units, 1flat = 10 long, and\na block = 1 unit. Then what number does 5 flat, 17long and 5 units\nrepresent represent ?","recall-that-with-base-ten-blocks-1-long-10-units-1flat-10-long-and-a-block-1-unit-then-what-number-does-5-flat-17long-and-5-units-represent-represent",{"id":378,"category":36,"text_question":379,"slug":380},534619,"y’’ -4y’ +4y = (12x^2 -6x)e^2x\nY(0)= 1\nY’(0)=0\nY(x)=c1y1+c2y2+yp","y-4y-4y-12x-2-6x-e-2x-y-0-1-y-0-0-y-x-c1y1-c2y2-yp",{"id":382,"category":36,"text_question":383,"slug":384},534647,"Two trains leave stations 294 miles apart at the same time and travel toward each other. One train travels at 95 miles per hour while the other travels at 115 miles per hourHow long will it take for the two trains to meet?","two-trains-leave-stations-294-miles-apart-at-the-same-time-and-travel-toward-each-other-one-train-travels-at-95-miles-per-hour-while-the-other-travels-at-115-miles-per-hourhow-long-will-it-take-for-t",{"id":386,"category":36,"text_question":387,"slug":388},534672,"I have a complex function I would like to integrate over. I can use two approaches and they should give the same solution. If I want to find the contour integral ∫𝛾𝑧¯𝑑𝑧\r\n for where 𝛾\r\n is the circle |𝑧−𝑖|=3\r\n oriented counterclockwise I get the following:\r\n\r\n∫2𝜋0𝑖+3𝑒𝑖𝑡⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯𝑑(𝑖+3𝑒𝑖𝑡)=∫2𝜋03𝑖(−𝑖+3𝑒−𝑖𝑡)𝑒𝑖𝑡𝑑𝑡=18𝜋𝑖\r\n\r\nIf I directly apply the Residue Theorem, I would get\r\n\r\n∫𝛾𝑧¯𝑑𝑧=2𝜋𝑖Res(𝑓,𝑧=0)=2𝜋𝑖","i-have-a-complex-function-i-would-like-to-integrate-over-i-can-use-two-approaches-and-they-should-give-the-same-solution-if-i-want-to-find-the-contour-integral-z-dz-for-where-is-the-circle",{"id":390,"category":36,"text_question":391,"slug":392},534699,"Construct a set of six pieces of data with​ mean, median, and midrange of 67 and where no two pieces of data are the same.","construct-a-set-of-six-pieces-of-data-with-mean-median-and-midrange-of-67-and-where-no-two-pieces-of-data-are-the-same",{"data":394},[395,399,403],{"id":396,"question":397,"answer":398},121692,"Find the equation of an ellipse with a major axis of length 8 units and a minor axis of length 6 units.","The equation of the ellipse is (x^2/16) + (y^2/9) = 1. It represents an elongated ellipse inclined along the x-axis with center at the origin, semi-major-axis of length 4, and semi-minor-axis of length 3.",{"id":400,"question":401,"answer":402},122779,"Math question: What is the equation of a basic horizontal line graph passing through the point (3, 5)?","Answer: The equation of the horizontal line graph passing through the point (3, 5) is y = 5, since a horizontal line has a constant y-value, and in this case, it is 5.",{"id":404,"question":405,"answer":406},151670,"What is the chain rule used to differentiate f(g(h(x))) where f, g, and h are differentiable functions?","The chain rule states that the derivative of f(g(h(x))) is equal to the product of the derivatives of f, g, and h evaluated at the corresponding function inputs, multiplied together. Specifically, it can be written as (d/dx)f(g(h(x))) = f'(g(h(x))) · g'(h(x)) · h'(x). It allows us to find the rate of change of composition functions.",{"$sicons":408},{"bxl:facebook-circle":409,"bxl:instagram":413,"mdi:web":415,"la:apple":417,"ph:google-logo-bold":420,"ph:google-logo":423},{"left":410,"top":410,"width":411,"height":411,"rotate":410,"vFlip":183,"hFlip":183,"body":412},0,24,"\u003Cpath fill=\"currentColor\" d=\"M12.001 2.002c-5.522 0-9.999 4.477-9.999 9.999c0 4.99 3.656 9.126 8.437 9.879v-6.988h-2.54v-2.891h2.54V9.798c0-2.508 1.493-3.891 3.776-3.891c1.094 0 2.24.195 2.24.195v2.459h-1.264c-1.24 0-1.628.772-1.628 1.563v1.875h2.771l-.443 2.891h-2.328v6.988C18.344 21.129 22 16.992 22 12.001c0-5.522-4.477-9.999-9.999-9.999\"/>",{"left":410,"top":410,"width":411,"height":411,"rotate":410,"vFlip":183,"hFlip":183,"body":414},"\u003Cpath fill=\"currentColor\" d=\"M11.999 7.377a4.623 4.623 0 1 0 0 9.248a4.623 4.623 0 0 0 0-9.248m0 7.627a3.004 3.004 0 1 1 0-6.008a3.004 3.004 0 0 1 0 6.008\"/>\u003Ccircle cx=\"16.806\" cy=\"7.207\" r=\"1.078\" fill=\"currentColor\"/>\u003Cpath fill=\"currentColor\" d=\"M20.533 6.111A4.6 4.6 0 0 0 17.9 3.479a6.6 6.6 0 0 0-2.186-.42c-.963-.042-1.268-.054-3.71-.054s-2.755 0-3.71.054a6.6 6.6 0 0 0-2.184.42a4.6 4.6 0 0 0-2.633 2.632a6.6 6.6 0 0 0-.419 2.186c-.043.962-.056 1.267-.056 3.71s0 2.753.056 3.71c.015.748.156 1.486.419 2.187a4.6 4.6 0 0 0 2.634 2.632a6.6 6.6 0 0 0 2.185.45c.963.042 1.268.055 3.71.055s2.755 0 3.71-.055a6.6 6.6 0 0 0 2.186-.419a4.6 4.6 0 0 0 2.633-2.633c.263-.7.404-1.438.419-2.186c.043-.962.056-1.267.056-3.71s0-2.753-.056-3.71a6.6 6.6 0 0 0-.421-2.217m-1.218 9.532a5 5 0 0 1-.311 1.688a3 3 0 0 1-1.712 1.711a5 5 0 0 1-1.67.311c-.95.044-1.218.055-3.654.055c-2.438 0-2.687 0-3.655-.055a5 5 0 0 1-1.669-.311a3 3 0 0 1-1.719-1.711a5.1 5.1 0 0 1-.311-1.669c-.043-.95-.053-1.218-.053-3.654s0-2.686.053-3.655a5 5 0 0 1 .311-1.687c.305-.789.93-1.41 1.719-1.712a5 5 0 0 1 1.669-.311c.951-.043 1.218-.055 3.655-.055s2.687 0 3.654.055a5 5 0 0 1 1.67.311a3 3 0 0 1 1.712 1.712a5.1 5.1 0 0 1 .311 1.669c.043.951.054 1.218.054 3.655s0 2.698-.043 3.654z\"/>",{"left":410,"top":410,"width":411,"height":411,"rotate":410,"vFlip":183,"hFlip":183,"body":416},"\u003Cpath fill=\"currentColor\" d=\"M16.36 14c.08-.66.14-1.32.14-2s-.06-1.34-.14-2h3.38c.16.64.26 1.31.26 2s-.1 1.36-.26 2m-5.15 5.56c.6-1.11 1.06-2.31 1.38-3.56h2.95a8.03 8.03 0 0 1-4.33 3.56M14.34 14H9.66c-.1-.66-.16-1.32-.16-2s.06-1.35.16-2h4.68c.09.65.16 1.32.16 2s-.07 1.34-.16 2M12 19.96c-.83-1.2-1.5-2.53-1.91-3.96h3.82c-.41 1.43-1.08 2.76-1.91 3.96M8 8H5.08A7.92 7.92 0 0 1 9.4 4.44C8.8 5.55 8.35 6.75 8 8m-2.92 8H8c.35 1.25.8 2.45 1.4 3.56A8 8 0 0 1 5.08 16m-.82-2C4.1 13.36 4 12.69 4 12s.1-1.36.26-2h3.38c-.08.66-.14 1.32-.14 2s.06 1.34.14 2M12 4.03c.83 1.2 1.5 2.54 1.91 3.97h-3.82c.41-1.43 1.08-2.77 1.91-3.97M18.92 8h-2.95a15.7 15.7 0 0 0-1.38-3.56c1.84.63 3.37 1.9 4.33 3.56M12 2C6.47 2 2 6.5 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2\"/>",{"left":410,"top":410,"width":418,"height":418,"rotate":410,"vFlip":183,"hFlip":183,"body":419},32,"\u003Cpath fill=\"currentColor\" d=\"M20.844 2c-1.64 0-3.297.852-4.407 2.156v.032c-.789.98-1.644 2.527-1.375 4.312c-.128-.05-.136-.035-.28-.094c-.692-.281-1.548-.594-2.563-.594c-3.98 0-7 3.606-7 8.344c0 3.067 1.031 5.942 2.406 8.094c.688 1.078 1.469 1.965 2.281 2.625S11.57 28 12.531 28s1.68-.324 2.219-.563c.54-.238.957-.437 1.75-.437c.715 0 1.078.195 1.625.438c.547.242 1.293.562 2.281.562c1.07 0 1.98-.523 2.719-1.188s1.36-1.519 1.875-2.343c.516-.824.922-1.633 1.219-2.282c.148-.324.258-.593.343-.812s.13-.281.188-.531l.188-.813l-.75-.343a5.3 5.3 0 0 1-1.5-1.063c-.625-.637-1.157-1.508-1.157-2.844A4.08 4.08 0 0 1 24.563 13c.265-.309.542-.563.75-.719c.105-.078.187-.117.25-.156c.062-.04.05-.027.156-.094l.843-.531l-.562-.844c-1.633-2.511-4.246-2.844-5.281-2.844c-.48 0-.82.168-1.25.25c.242-.226.554-.367.75-.624c.004-.004-.004-.028 0-.032q.018-.016.031-.031h.031a6.16 6.16 0 0 0 1.563-4.438L21.78 2zm-1.188 2.313c-.172.66-.453 1.289-.906 1.78l-.063.063c-.382.516-.972.899-1.562 1.125c.164-.652.45-1.312.844-1.812c.008-.012.023-.02.031-.032c.438-.5 1.043-.875 1.656-1.125zm-7.437 5.5c.558 0 1.172.21 1.812.468s1.239.594 2.094.594c.852 0 1.496-.336 2.25-.594s1.559-.469 2.344-.469c.523 0 1.816.333 2.906 1.344c-.191.172-.36.297-.563.531a6.2 6.2 0 0 0-1.53 4.094c0 1.906.831 3.34 1.718 4.25c.55.563.89.696 1.313.938c-.055.125-.086.222-.157.375a19 19 0 0 1-1.093 2.062c-.454.727-1.004 1.434-1.532 1.907c-.527.472-1 .687-1.375.687c-.566 0-.898-.156-1.468-.406S17.581 25 16.5 25c-1.137 0-1.977.336-2.563.594c-.585.258-.89.406-1.406.406c-.246 0-.777-.2-1.375-.688c-.597-.488-1.254-1.23-1.844-2.156c-1.183-1.851-2.093-4.394-2.093-7c0-3.941 2.199-6.343 5-6.343\"/>",{"left":410,"top":410,"width":421,"height":421,"rotate":410,"vFlip":183,"hFlip":183,"body":422},256,"\u003Cpath fill=\"currentColor\" d=\"M228 128a100 100 0 1 1-22.86-63.64a12 12 0 0 1-18.51 15.28A76 76 0 1 0 203.05 140H128a12 12 0 0 1 0-24h88a12 12 0 0 1 12 12\"/>",{"left":410,"top":410,"width":421,"height":421,"rotate":410,"vFlip":183,"hFlip":183,"body":424},"\u003Cpath fill=\"currentColor\" d=\"M224 128a96 96 0 1 1-21.95-61.09a8 8 0 1 1-12.33 10.18A80 80 0 1 0 207.6 136H128a8 8 0 0 1 0-16h88a8 8 0 0 1 8 8\"/>",{"oVhJaef6Ht":8,"t96FybqVTi":8,"5lK7LS5al0":8,"5oSQ2a90xd":8,"XW6TWlT9xC":8,"2QISyIzlyM":8,"HGsO2Ckakl":8},"/general/given-the-fraction-ab-if-n-times-the-denominator-is-subtracted-from-the-numerator-and-n-times-the-numerator-from-the-denominator-2-is-obtained-then-said-fraction-in-terms-of-n-will-be"] AppleWebKit/537.36 KHTML,likeGecko Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://gcdn.fx2.io/math-master.org/"}}