Question

I have a bag with balls numbered 1 to 100. I take out a ball and put it back in the bag. I repeat the experiment 14 times. What is the probability that I get the same number twice?

210

likes
1048 views

Answer to a math question I have a bag with balls numbered 1 to 100. I take out a ball and put it back in the bag. I repeat the experiment 14 times. What is the probability that I get the same number twice?

Expert avatar
Tiffany
4.5
103 Answers
Para encontrar la probabilidad de que te salga dos veces el mismo número, debemos considerar primero el total de posibles resultados y después contar cuántos de esos resultados cumplen con la condición requerida.

Para cada una de las 14 extracciones, hay 100 números posibles que pueden salir. Por lo tanto, el total de posibles resultados distintos es de $100^{14}$.

Para contar cuántos de esos resultados cumplen con la condición requerida, primero elegimos un número que se repetirá dos veces, hay 100 maneras de hacerlo. Para las dos extracciones del mismo número, hay $1$ manera para la primera y $1$ manera para la segunda. Para los otros 12 números, hay $99^{12}$ maneras de que aparezcan en las 12 extracciones restantes.

Entonces, el número total de resultados que cumplen con la condición requerida es $100 \cdot 1 \cdot 1 \cdot 99^{12}$.

La probabilidad de que te salga dos veces el mismo número es:

\frac{100 \cdot 1 \cdot 1 \cdot 99^{12}}{100^{14}} = \frac{99^{12}}{100^{13}} \approx 0.37\%

Entonces, la probabilidad de que te salga dos veces el mismo número en las 14 extracciones es aproximadamente $0.37\%$.

$\boxed{0.37\%}$

Frequently asked questions (FAQs)
What are the roots of the quadratic equation 2x^2 + 5x + 3 = 0?
+
What is the component form of the unit vector, u, in the direction of vector v = ? (
+
What is the axis of symmetry for the parabola function y = 2x^2 - 4x + 3?
+
New questions in Mathematics
Let 𝑢 = 𝑓(𝑥, 𝑦) = (𝑒^𝑥)𝑠𝑒𝑛(3𝑦). Check if 9((𝜕^2) u / 𝜕(𝑥^2)) +((𝜕^2) 𝑢 / 𝜕(𝑦^2)) = 0
The time it takes for a person to travel 300 m is 15 minutes. What is their speed in meters per second?
10.Silvana must knit a blanket in 9 days. Knitting 8 hours a day, at the end of the fifth day, only 2/5 of the blanket was done. To be able to finish on time, how many hours will Silvana have to knit per day?
How many percent is one second out a 24 hour?
what is 3% of 105?
1 plus 1
(2x+5)^3+(x-3)(x+3)
4. Show that if n is any integer, then n^2 3n 5 is an odd integer
2x+4x=
find f(x) for f'(x)=3x+7
Two business partners have a bank balance of $17,942.00. After the first year their interest brings their balance to $18,928.91. What rate of interest is earned?
4+168×10³×d1+36×10³×d2=-12 -10+36×10³×d1+72×10³×d2=0
Fill in the P(X-x) values to give a legitimate probability distribution for the discrete random variable X, whose possible values are -5 ,3 , 4, 5 , and 6.
Write an expression using compatible numbers that can be used to estimate the quotient 629\86
Find sup { x∈R, x²+3<4x }. Justify the answer
X^X =49 X=?
a) 6x − 5 > x + 20
Solve the following 9x - 9 - 6x = 5 + 8x - 9
Sodium 38.15 38.78 38.5 38.65 38.79 38.89 38.57 38.59 38.59 38.8 38.63 38.43 38.56 38.46 38.79 38.42 38.74 39.12 38.5 38.42 38.57 38.37 38.71 38.71 38.4 38.56 38.39 38.34 39.04 38.8 A supplier of bottled mineral water claims that his supply of water has an average sodium content of 36.6 mg/L. The boxplot below is of the sodium contents levels taken from a random sample of 30 bottles. With this data investigate the claim using SPSS to apply the appropriate test. Download the data and transfer it into SPSS. Check that your data transfer has been successful by obtaining the Std. Error of the mean for your data which should appear in SPSS output as 0.03900.. If you do not have this exact value, then you may have not transferred your data from the Excel file to SPSS correctly. Do not continue with the test until your value agrees as otherwise you may not have correct answers. Unless otherwise directed you should report all numeric values to the accuracy displayed in the SPSS output that is supplied when your data has been transferred correctly. In the following questions, all statistical tests should be carried out at the 0.05 significance level. Sample mean and median Complete the following concerning the mean and median of the data. mean =  mg/L 95% CI:  to  mg/L Based upon the 95% confidence interval, is it plausible that the average sodium content is 36.9 mg/L?      median:  mg/L The median value is      36.9 mg/L. Skewness Complete the following concerning the skewness of the data. Skewness statistic =        Std. Error =  The absolute value of the skewness statistic     less than 2 x Std. Error Therefore the data can be considered to come from a population that is      . Normality test Complete the following summary concerning the formal testing of the normality of the data. H0: The data come from a population that     normal H1: The data come from a population that     normal Application of the Shapiro-Wilk test indicated that the normality assumption     reasonable for sodium content (S-W(  )=  , p=   ). Main test Using the guidelines you have been taught that consider sample size, skewness and normality, choose and report the appropriate main test from the following ( Appropriate ONE ) You have selected that you wish to report the one-sample t-test. H0: The mean sodium content     equal to 36.9 mg/L H1: The mean sodium content     equal to 36.9 mg/L Application of the one-sample t-test indicated that the mean is      36.9 mg/L (t(  ) =  , p =   ). You have selected that you wish to report the Wilcoxon signed rank test. H0: The median sodium content     equal to 36.9 mg/L H1: The median sodium content     equal to 36.9 mg/L Application of the Wilcoxon signed rank test indicated that the median is      36.9 mg/L (z =  , N =  , p =   ).
How many digits are there in Hindu-Arabic form of numeral 26 × 1011