Question

I need to know how to solve the discharge of a capacitor whose resistances are 10kilo ohms, 330 ohm, with a voltage source of 7volts, the capacitor has 470uF

273

likes
1365 views

Answer to a math question I need to know how to solve the discharge of a capacitor whose resistances are 10kilo ohms, 330 ohm, with a voltage source of 7volts, the capacitor has 470uF

Expert avatar
Ali
4.4
92 Answers
Para calcular la descarga de un condensador a través de resistencias, podemos usar la ley de descarga de un condensador, que se expresa como:

V_c = V_f \cdot e^{-\frac{t}{RC}}

Donde:
- V_c es el voltaje en el condensador en el tiempo t .
- V_f es el voltaje inicial en el condensador.
- R es la resistencia total en el circuito.
- C es la capacitancia del condensador.
- t es el tiempo transcurrido.

Primero, necesitamos calcular la resistencia total en el circuito. Dado que las resistencias están en paralelo, podemos calcular la resistencia total usando la fórmula:

\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2}

Donde R_1 = 10k\Omega = 10,000\Omega y R_2 = 330\Omega . Calculando R_{total} :

\frac{1}{R_{total}} = \frac{1}{10,000\Omega} + \frac{1}{330\Omega}
\frac{1}{R_{total}} = 0.0001 + 0.00303
R_{total} = \frac{1}{0.00313}
R_{total} \approx 318.47\Omega

Ahora, con R_{total} y la capacitancia C = 470\mu F = 0.00047 F , y el voltaje inicial V_f = 7V , podemos usar la fórmula de descarga del condensador para resolver el problema. Vamos a calcular el tiempo t cuando el voltaje en el condensador V_c = 0V .

0V = 7V \cdot e^{-\frac{t}{318.47\Omega \cdot 0.00047 F}}
e^{-\frac{t}{150.0151}} = 0
-\frac{t}{150.0151} = \ln(0)
\text{No hay solución real}

El condensador nunca se descargará completamente a 0V en este circuito, ya que requeriría un tiempo infinito. La descarga será exponencial pero nunca alcanzará completamente 0V.

**Respuesta:** El condensador no se descargará completamente a 0V en este circuito.

Frequently asked questions (FAQs)
What are the characteristics of the ellipse with the equation (x-2)^2/9 + (y+3)^2/16 = 1?
+
Find the unit vector of vector V = (-3, 4) and determine its components.
+
What is the integral of x^2 ?
+
New questions in Mathematics
8x²-30x-10x²+70x=-30x+10x²-20x²
-6n+5=-13
The sum of an infinite geometric series is 13,5 The sum of the same series, calculated from the third term is 1,5. Q. Calculate r if r>0.
Since one of the three integers whose product is (-60) is (+4), write the values that two integers can take.
A, B, C and D are numbers; If ABCD = 23, What is the result of ABCD BCDA CDAB DABC operation?
Determine the momentum of a 20 kg body traveling at 20 m/s.
The sum of two numbers is equal to 58 and the largest exceeds by at least 12. Find the two numbers
If you randomly selected one person from the 900 subjects in this study, what is the probability that the person exhibits the minimum BMI?
How much does the average college student spend on food per month? A random sample of 50 college students showed a sample mean $670 with a standard deviation $80. Obtain the 95% confidence interval for the amount college students spend on food per month.
3+7
-1%2F2x-4%3D18
Next%C3%B3n%2C+we+are+given+a+series+of+Tri%C3%A1angles+Right%C3%A1angles+%3Cbr%2F%3Ey+in+each+one+of+them+ are+known+2%28two%29+measurements+of+sides.+%3Cbr%2F%3Elet's+determine+all+trigonom%C3%A9tric+ratios.
5x+13+7x-10=99
Let X be a discrete random variable such that E(X)=3 and V(X)=5. Let 𝑌 = 2𝑋^2 − 3𝑋. Determine E(Y).
Kaya deposits 25,000 into an account that earns 3% interest compounded monthly. How much does Kaya have in the account after 6 years 8 months? Round to the nearest cent. 32,912.50 30,000 29,923.71 30,527.45
Cuboid containers (open at the top) should be examined with regard to their volume. The figure below shows a network of such containers (x ∈ Df). Determine a function ƒ (assignment rule and definition area D) that describes the volume of these containers and calculate the volume of such a container if the content of the base area is 16 dm². Show that this function f has neither a local maximum nor a global maximum
there are 500,000 bacteria at the end of a pin point. 1000 bacteria can make a person sick. then bacteria at the tip of a pin point can make 500 people sick. Also, many people do not know that bacteria can (reproduce). Let's say there are 5 bacteria and we leave it for 15 minutes. bacteria will multiply to 10. if left for up to 30 minutes, 20 bacteria will form. if left up to 45 minutes. bacteria will multiply up to 40. every 15 minutes the bacteria will double 2. if you start with five bacteria that reproduce every 15 minutes, how manu bacteria would you have after 12 hours ?
In a school playground When going out for recess, 80 men and 75 women coexist, the Patio measures 10 meters For 40 meters (what will be the population density in the break
Write decimal as the fraction 81/125 simplified
Find the orthogonal projection of a point A = (1, 2, -1) onto a line passing through the points Pi = (0, 1, 1) and P2 = (1, 2, 3).