Question

(Linear cost model) Christian Jiménez determines that if he produces 100 items the total cost is $500, while if he produces 150 items the total cost is $600. Assuming the production-cost model is linear, determine the fixed cost and variable costs. What will be the cost of producing 200 items?

208

likes
1042 views

Answer to a math question (Linear cost model) Christian Jiménez determines that if he produces 100 items the total cost is $500, while if he produces 150 items the total cost is $600. Assuming the production-cost model is linear, determine the fixed cost and variable costs. What will be the cost of producing 200 items?

Expert avatar
Murray
4.5
92 Answers
Para determinar los costos fijos y variables en un modelo de costos lineal, podemos usar la información proporcionada para crear un sistema de ecuaciones. Denotemos el costo fijo como \( F \) y el costo variable por artículo como \( V \). De los datos dados: 1. Cuando se producen 100 artículos, el costo total es de $500. 2. Cuando se producen 150 artículos, el costo total es de $600. Podemos plantear las siguientes ecuaciones: 1. \(100V + F = 500\) 2.\(150V + F = 600\) Ahora, resolvamos este sistema de ecuaciones para encontrar \( V \) y \( F \). Restar la primera ecuación de la segunda nos da: \( 150V + F - (100V + F) = 600 - 500 \) \(50V = 100\) \( V = 2 \) Ahora que tenemos \( V \), podemos sustituirlo nuevamente en la primera ecuación para encontrar \( F \): \( 100(2) + F = 500 \) \( 200 + F = 500 \) \( F = 300 \) Entonces, el costo fijo \( F \) es $300 y el costo variable \( V \) es $2 por artículo. Para encontrar el costo de producir 200 artículos, usamos la ecuación: \( \text{Costo total} = V \times \text{Número de artículos} + F \) Sustituyendo los valores tenemos: \( \text{Costo total} = 2 \veces 200 + 300 \) \( \text{Costo total} = 400 + 300 \) \( \text{Costo total} = 700 \) Por lo tanto, el costo de producir 200 artículos sería de $700.

Frequently asked questions (FAQs)
Question: In triangle ABC, if the angle bisector of angle A divides the opposite side BC into segments of 5x and 8x, find the ratio of the lengths of AB and AC.
+
What is the derivative of f(x) = 8x^3 + 4x^2 - 3x + 2?
+
Math question: Find the absolute maximum and minimum values of the function f(x) = x^2 - 4x + 1 on the interval [-2, 5]. (
+
New questions in Mathematics
Add. 7/w²+18w+81 + 1/w²-81
a ferry travels 1/6 of the distance between two ports in 3/7 hour. The ferry travels at a constant rate. At this rate, what fraction of the distance between the two ports can the ferry travel in one hour.
Revenue Maximization: A company sells products at a price of $50 per unit. The demand function is p = 100 - q, where p is the price and q is the quantity sold. How many units should they sell to maximize revenue?
Write 32/25 as a percent
A car that starts from rest moves for 11 min, reaching a speed of 135 km/h, calculate the acceleration it had
Use the elimination to find the solution to each linear system. X+y=43 2x-y=20
what is the annual rate on ​$525 at 0.046​% per day for 3 months?
"If three wolves catch three rabbits in three hours, how many wolves would it take to catch a hundred rabbits in a hundred hours?" The answer is the number of response units.
(2b) to the 1/4th power. Write the expression in radical form.
v Is the following statement a biconditional? If Shannon is watching a Tigers game, then it is on television.
Solve : 15/16 divide 12/8 =x/y
show step by step simplification: (¬𝑑∨((¬b∧c)∨(b∧¬c)))∧((𝑎 ∧ 𝑏) ∨ (¬𝑎 ∧ ¬𝑏))∧(¬𝑐∨((¬𝑑∧𝑎)∨(𝑑∧¬𝑎)))
How many square feet of floor area are there in three two-storey apartment houses, each of which is 38 feet wide and 76 feet long?
Given (3x+2)E [2;14] how much money (in soles) does Sophia have if numerically it is the greatest value of x?
A machine produces 255 bolts in 24 minutes. At the same rate, how many bolts would be produced in 40 minutes?
9 x² + 2x + 1 = 0
The mass of 120 molecules of X2C4 is 9127.2 amu. Identify the unknown atom, X, by finding the atomic mass. The atomic mass of C is 12.01 amu/atom
The area bounded by the curve y=ln(x) and the lines x=1 and x=4 above the x−axis is
The following incoming payments show up at a tax inspection: 25 000€ on 19.01.2008, 140 000€ on 27.03.2008 and 19 000€ on a date that which is illegible, and 60 000€ on 15.06.2008. On which date did the payment of the 19 000€ appear, if on 30.06.2008 the money on the account (incl. interest at 4%) is 246 088.89€? Use simple interest and 30E/360 DCC. Solution: 45 days, 15.05.08
The slope of the tangent line to the curve f(x)=4tan x at the point (π/4,4)