Question

On January 25th, 80% pass, on January 31st, 75% pass, and on February 3rd, 85% pass. Determine the minimum percentage of integralists?

261

likes
1306 views

Answer to a math question On January 25th, 80% pass, on January 31st, 75% pass, and on February 3rd, 85% pass. Determine the minimum percentage of integralists?

Expert avatar
Cristian
4.7
111 Answers
Să presupunem că numărul total de întregiți este reprezentat de variabila $x$.

Pe 25 ianuarie trec 80% din numărul total de întregiți, ceea ce înseamnă că numărul de întregiți care trec este $0.8x$.

Pe 31 ianuarie trec 75% din numărul total de întregiți, ceea ce înseamnă că numărul de întregiți care trec este $0.75x$.

Pe 3 februarie trec 85% din numărul total de întregiți, ceea ce înseamnă că numărul de întregiți care trec este $0.85x$.

Pentru a determina procentul minim de întregiți, trebuie să găsim cea mai mică valoare comună (CMMD) a procentelor menționate mai sus.

Luând în considerare acești trei factori comuni ai întregiților, putem folosi formula $CMMD = \frac{x}{100}$, unde $x$ reprezintă procentul minim de întregiți care trec.

CMMD = \frac{x}{100} = \frac{0.8x}{100} = \frac{0.75x}{100} = \frac{0.85x}{100}

Pentru a găsi procentul minim de întregiți, putem găsi CMMDC-ul procentelor 80%, 75% și 85%. Putem face acest lucru prin simplificarea fracțiilor:

CMMD = \frac{x}{100} = \frac{0.8x}{100} = \frac{4}{5} \cdot \frac{x}{100} = \frac{3}{4} \cdot \frac{x}{100} = \frac{17}{20} \cdot \frac{x}{100}

Acum putem determina procentul minim de întregiți:

\frac{x}{100} = \frac{17}{20} \cdot \frac{x}{100} \Rightarrow 1 = \frac{17}{20} \Rightarrow \frac{20}{20} = \frac{17}{20} \Rightarrow \frac{3}{20} = \frac{x}{100} \Rightarrow x = \frac{3}{20} \cdot 100 = \frac{300}{20} = \frac{15}{1} = 15

Answer: Procentul minim de înegalități este de 15%.

Frequently asked questions (FAQs)
What is the value of cot(π/3) ?
+
Math question: Find the limit as x approaches zero of (sin(x) - x)/x^3 using L'Hospital's Rule.
+
What is the value of sinh(3) - cosh(2) in hyperbolic functions?
+
New questions in Mathematics
2.5 / 21.85
The miles per gallon (mpg) for each of 20 medium-sized cars selected from a production line during the month of March are listed below. 23.0 21.2 23.5 23.6 20.1 24.3 25.2 26.9 24.6 22.6 26.1 23.1 25.8 24.6 24.3 24.1 24.8 22.1 22.8 24.5 (a) Find the z-scores for the largest measurement. (Round your answers to two decimal places.) z =
4. Show that if n is any integer, then n^2 3n 5 is an odd integer
If the midpoint of point A on the x=3 line and point B on the y=-2 line is C(-2,0), what is the sum of the ordinate of point A and the abscissa of point B?
41/39 - 1/38
-3(-4x+5)=-6(7x-8)+9-10x
What is 28 marks out of 56 as a percentage
The cost of unleaded gasoline in the Bay Area once followed an unknown distribution with a mean of $4.59 and a standard deviation of $0.10. Sixteen gas stations from the Bay Area are randomly chosen. We are interested in the average cost of gasoline for the 16 gas stations. 84. Find the probability that the average price for 30 gas stations is less than $4.55. a 0.6554 b 0.3446 c 0.0142 d 0.9858 e 0
Two business partners have a bank balance of $17,942.00. After the first year their interest brings their balance to $18,928.91. What rate of interest is earned?
form a key for your lock containing the numbers 2 2 5 8 How many different keys can you form?
A person decides to invest money in fixed income securities to redeem it at the end of 3 years. In this way, you make monthly deposits of R$300.00 in the 1st year, R$400.00 in the 2nd year and R$500.00 in the 3rd year. Calculate the amount, knowing that compound interest is 0.6% per month for the entire period. The answer is 15,828.60
Use the power rule for logarithms to solve the following word problem exactly. If you invest $1, 000 at 5% interest compounded annually, how many years will it take before you have $2,000?
(2m+3)(4m+3)=0
What is 75 percent less than 60
-1%2F2x-4%3D18
ind the z-score for which 72% of the distribution's area lies between -z and z. -1.7417, 1.7417 -1.1538, 1.1538 -1.0803, 1.0803 -2.826, 2.826
Calculate the difference between 407 and 27
Cuboid containers (open at the top) should be examined with regard to their volume. The figure below shows a network of such containers (x ∈ Df). Determine a function ƒ (assignment rule and definition area D) that describes the volume of these containers and calculate the volume of such a container if the content of the base area is 16 dm². Show that this function f has neither a local maximum nor a global maximum
y’’ -4y’ +4y = (12x^2 -6x)e^2x Y(0)= 1 Y’(0)=0 Y(x)=c1y1+c2y2+yp
f(r) = 1/r+9 find f(x^2) + 1