Question

On January 25th, 80% pass, on January 31st, 75% pass, and on February 3rd, 85% pass. Determine the minimum percentage of integralists?

261

likes
1306 views

Answer to a math question On January 25th, 80% pass, on January 31st, 75% pass, and on February 3rd, 85% pass. Determine the minimum percentage of integralists?

Expert avatar
Cristian
4.7
111 Answers
Să presupunem că numărul total de întregiți este reprezentat de variabila $x$.

Pe 25 ianuarie trec 80% din numărul total de întregiți, ceea ce înseamnă că numărul de întregiți care trec este $0.8x$.

Pe 31 ianuarie trec 75% din numărul total de întregiți, ceea ce înseamnă că numărul de întregiți care trec este $0.75x$.

Pe 3 februarie trec 85% din numărul total de întregiți, ceea ce înseamnă că numărul de întregiți care trec este $0.85x$.

Pentru a determina procentul minim de întregiți, trebuie să găsim cea mai mică valoare comună (CMMD) a procentelor menționate mai sus.

Luând în considerare acești trei factori comuni ai întregiților, putem folosi formula $CMMD = \frac{x}{100}$, unde $x$ reprezintă procentul minim de întregiți care trec.

CMMD = \frac{x}{100} = \frac{0.8x}{100} = \frac{0.75x}{100} = \frac{0.85x}{100}

Pentru a găsi procentul minim de întregiți, putem găsi CMMDC-ul procentelor 80%, 75% și 85%. Putem face acest lucru prin simplificarea fracțiilor:

CMMD = \frac{x}{100} = \frac{0.8x}{100} = \frac{4}{5} \cdot \frac{x}{100} = \frac{3}{4} \cdot \frac{x}{100} = \frac{17}{20} \cdot \frac{x}{100}

Acum putem determina procentul minim de întregiți:

\frac{x}{100} = \frac{17}{20} \cdot \frac{x}{100} \Rightarrow 1 = \frac{17}{20} \Rightarrow \frac{20}{20} = \frac{17}{20} \Rightarrow \frac{3}{20} = \frac{x}{100} \Rightarrow x = \frac{3}{20} \cdot 100 = \frac{300}{20} = \frac{15}{1} = 15

Answer: Procentul minim de înegalități este de 15%.

Frequently asked questions (FAQs)
Math Question: Find the absolute extrema of the function f(x) = x^3 - 6x^2 + 9x - 2 on the interval [-2,5].
+
How many ways are there to arrange the letters in the word "COMBINATION"?
+
Math Question: "What is the equation of a parabola with its vertex at (2,3) and passing through the point (1,6)?"
+
New questions in Mathematics
Find an arc length parameterization of the curve that has the same orientation as the given curve and for which the reference point corresponds to t=0. Use an arc length s as a parameter. r(t) = 3(e^t) cos (t)i + 3(e^t)sin(t)j; 0<=t<=(3.14/2)
If we have the sequence: 3, 6, 12, 24 Please determine the 14th term.
How many percent is one second out a 24 hour?
Supposed 60% of the register voters in a country or democrat. If a sample of 793 voters is selected, what is the probability that the sample proportion of Democrats will be greater than 64% round your answer to four decimal places
89, ÷ 10
Which of the methods below can be used to workout 95% of an amount? a. Dividing the amount 100 and multiply by 95 b. Working out 5% of the amount and taking it away from the full amount c. Dividing 95 by 100 and multiplying the answer by the amount d. Dividing the amount by 95 and then multiply by 100
A machine produces 255 bolts in 24 minutes. At the same rate, how many bolts would be produced in 40 minutes?
3%2B2
A company made 150,000 in the first year 145,000 in the second 140,000 in the third year successively during the first decade of this company's existence it made a total of
Let X be a discrete random variable such that E(X)=3 and V(X)=5. Let 𝑌 = 2𝑋^2 − 3𝑋. Determine E(Y).
Determine the kinetic energy of a baseball whose mass is 100 grams and has a speed of 30 m/s.
7- A printing company found in its investigations that there were an average of 6 errors in 150-page prints. Based on this information, what is the probability of there being 48 errors in a 1200-page job?
Oi👋🏻 Toque em "Criar Nova Tarefa" para enviar seu problema de matemática. Um dos nossos especialistas começará a trabalhar nisso imediatamente!
The average weekly earnings in the leisure and hospitality industry group for a re‐ cent year was $273. A random sample of 40 workers showed weekly average ear‐ nings of $285 with the population standard deviation equal to 58. At the 0.05 level of significance can it be concluded that the mean differs from $273? Find a 95% con‐ fidence interval for the weekly earnings and show that it supports the results of the hypothesis test.
Calculate NPV, IRR and PAYBACK through a cash flow for a period of five years, with discount rate of: a) 10% b) 12% c) 15% initial annual cost $41,400,000
4m - 3t + 7 = 16
Define excel and why we use it?
g(x)=3(x+8). What is the value of g(12)
Suppose a car license plate consists of 2 letters and two digits of which the first cannot be zero. How many different plates can be engraved? consider only 26 letters and 10 digits draw an example of this.
Find the number of liters of water needed to reduce 9 liters of lotion. shave containing 50% alcohol to a lotion containing 30% alcohol.