1. Let's denote the given matrices:
A = \begin{pmatrix}-2 & 5 \\8 & 6\end{pmatrix}, \quad B = \begin{pmatrix}-2\end{pmatrix}, \quad C = \begin{pmatrix}-2\end{pmatrix}
2. We need to find scalars \alpha and \beta such that:
\alpha A + \beta B = C
3. Checking suitable values:
\alpha \begin{pmatrix}-2 & 5 \\8 & 6\end{pmatrix} + \beta \begin{pmatrix}-2\end{pmatrix} = \begin{pmatrix}-2\end{pmatrix}
4. Comparing matrix dimensions and entries, we see that matrix multiplication only affects the element:
0A + 1B = 0 \begin{pmatrix}-2 & 5 \\8 & 6\end{pmatrix} + 1 \begin{pmatrix}-2\end{pmatrix}
5. Thus:
C = 0A + 1B = \begin{pmatrix}-2\end{pmatrix}
Answer:
C = 0A + 1B
with scalars 0 and 1.