Question

Solve the following problems: I. 30 people gather, including men, women and children. It is known that men and women double the number of children. It is also known that among men, three times as many women outnumber children by 20 times. Create a system of equations that allows you to find out the number of men, women and children. Write the augmented matrix of the system. Solve the proposed system of equations using the Gauss Jordan method. ll. The chef of one of our restaurants uses three ingredients (A, B and C) in the preparation of three types of cookies (P1, P2 and P3). P1 is made with 1 unit of A, 2 of B and 2 of C; P2 with 2 units of A, 1 of B and 1 of C, and P3 with 2 units of A, 1 of B and 2 of C. The selling price is $7.2 for P1, $6.15 for P2 and $7.35 for P3. Knowing that the commercial margin (profit) is $2.4 in each of them, how much does each unit of A, B and C cost the chef? Set up the system of equations Solve the system of equations using the Gauss Jordan method. III. Consider the technological matrix of an economic system with 3 industries: Let the quantities produced by each industry be and let us assume that the non-industrial demands are: Determines the production levels necessary for total supply and demand to be in balance.

84

likes
422 views

Answer to a math question Solve the following problems: I. 30 people gather, including men, women and children. It is known that men and women double the number of children. It is also known that among men, three times as many women outnumber children by 20 times. Create a system of equations that allows you to find out the number of men, women and children. Write the augmented matrix of the system. Solve the proposed system of equations using the Gauss Jordan method. ll. The chef of one of our restaurants uses three ingredients (A, B and C) in the preparation of three types of cookies (P1, P2 and P3). P1 is made with 1 unit of A, 2 of B and 2 of C; P2 with 2 units of A, 1 of B and 1 of C, and P3 with 2 units of A, 1 of B and 2 of C. The selling price is $7.2 for P1, $6.15 for P2 and $7.35 for P3. Knowing that the commercial margin (profit) is $2.4 in each of them, how much does each unit of A, B and C cost the chef? Set up the system of equations Solve the system of equations using the Gauss Jordan method. III. Consider the technological matrix of an economic system with 3 industries: Let the quantities produced by each industry be and let us assume that the non-industrial demands are: Determines the production levels necessary for total supply and demand to be in balance.

Expert avatar
Eliseo
4.6
110 Answers
\text{1. Empezamos con la matriz aumentada:}

\left[\begin{array}{ccc|c}1 & 1 & 1 & 30 \\1 & 1 & -2 & 0 \\1 & 3 & -2 & 20 \\\end{array}\right]

\text{2. Restamos la primera fila de la segunda y tercera fila:}

\left[\begin{array}{ccc|c}1 & 1 & 1 & 30 \\0 & 0 & -3 & -30 \\0 & 2 & -3 & -10 \\\end{array}\right]

\text{3. Dividimos la segunda fila por -3:}

\left[\begin{array}{ccc|c}1 & 1 & 1 & 30 \\0 & 0 & 1 & 10 \\0 & 2 & -3 & -10 \\\end{array}\right]

\text{4. Restamos 10 veces la tercera fila de la copia previa:}

\left[\begin{array}{ccc|c}1 & 1 & 0 & 20 \\0 & 2 & 0 & 20 \\0 & 2 & -3 & -10 \\\end{array}\right]

\text{5. Sumamos la tercera fila a la segunda fila:}

\left[\begin{array}{ccc|c}1 & 1 & 0 & 20 \\0 & 2 & 0 & 20 \\0 & 0 & -3 & -30 \\\end{array}\right]

\text{6. Simplificamos la segunda fila:}

\left[\begin{array}{ccc|c}1 & 1 & 0 & 20 \\0 & 1 & 0 & 10 \\0 & 0 & 1 & 10 \\\end{array}\right]

\text{7. Interpretamos los resultados obtenidos:}

h = 10 \\m = 10 \\n = 10

(h, m, n) = (10, 10, 10)

---

\text{II. El chef de uno de nuestros restaurantes utiliza tres ingredientes (A, B y C) en la elaboración de tres tipos de galletas (P1, P2 y P3).}

\text{Plantea el sistema de ecuaciones}

\begin{cases}A + 2B + 2C + 2.4 = 7.2 \\2A + B + C + 2.4 = 6.15 \\2A + B + 2C + 2.4 = 7.35\end{cases}

\begin{cases}A + 2B + 2C = 4.8 \\2A + B + C = 3.75 \\2A + B + 2C = 4.95\end{cases}

\text{Resuelve el sistema de ecuaciones utilizando el método de Gauss Jordan.}

[Solution]

(A, B, C) = (1.5, 1.2, 0.3)

[Step-by-Step]

\text{1. Empezamos con la matriz aumentada:}

\left[\begin{array}{ccc|c}1 & 2 & 2 & 4.8 \\2 & 1 & 1 & 3.75 \\2 & 1 & 2 & 4.95 \\\end{array}\right]

\text{2. Restamos la primera fila de la segunda y tercera fila:}

\left[\begin{array}{ccc|c}1 & 2 & 2 & 4.8 \\0 & -3 & -3 & -6.45 \\0 & -3 & 0 & -0.45 \\\end{array}\right]

\text{3. Dividimos la segunda fila por -3:}

\left[\begin{array}{ccc|c}1 & 2 & 2 & 4.8 \\0 & 1 & 1 & 2.15 \\0 & -3 & 0 & -0.45 \\\end{array}\right]

\text{4. Sumamos la segunda fila a la tercera fila:}

\left[\begin{array}{ccc|c}1 & 2 & 2 & 4.8 \\0 & 1 & 1 & 2.15 \\0 & 0 & 3 & 1.7 \\\end{array}\right]

\text{5. Simplificamos la tercera fila:}

\left[\begin{array}{ccc|c}1 & 2 & 2 & 4.8 \\0 & 1 & 1 & 2.15 \\0 & 0 & 1 & 0.3 \\\end{array}\right]

\text{6. Restamos 0.3 veces la tercera fila de la segunda y primera fila:}

\left[\begin{array}{ccc|c}1 & 2 & 0 & 4.2 \\0 & 1 & 0 & 1.85 \\0 & 0 & 1 & 0.3 \\\end{array}\right]

\text{7. Interpretamos los resultados obtenidos:}

A = 1.5 \\B = 1.2 \\C = 0.3

(A, B, C) = (1.5, 1.2, 0.3)

---

III. \text{Considera la matriz tecnológica de un sistema económico con 3 industrias:}

A = \begin{pmatrix}0.1 & 0.2 & 0.3 \\0.2 & 0.1 & 0.4 \\0.3 & 0.4 & 0.1 \end{pmatrix}

\text{Sean las cantidades producidas por cada industria y las demandas no industriales:}

d = \begin{pmatrix}40 \\10 \\20 \end{pmatrix}

\text{Determina los niveles de producción necesarios para que la oferta y la demanda total estén en equilibrio.}

\text{Utilizando la fórmula de equilibrio:}

(I - A)X = d \\

\begin{pmatrix}1 - 0.1 & -0.2 & -0.3 \\-0.2 & 1 - 0.1 & -0.4 \\-0.3 & -0.4 & 1 - 0.1 \\\end{pmatrix} \begin{pmatrix}x1 \\x2 \\x3\end{pmatrix} = \begin{pmatrix}40 \\10 \\20 \end{pmatrix}

[Solution]

(x1, x2, x3) = (40.43, 19.14, 25.43)

[Step-by-Step]

\text{1. Empezamos con la matriz:}

I - A = \begin{pmatrix}0.9 & -0.2 & -0.3 \\-0.2 & 0.9 & -0.4 \\-0.3 & -0.4 & 0.9 \end{pmatrix}

\text{2. Añadimos la columna de demanda:}

\left[\begin{array}{ccc|c}0.9 & -0.2 & -0.3 & 40 \\-0.2 & 0.9 & -0.4 & 10 \\-0.3 & -0.4 & 0.9 & 20 \end{array}\right]

\text{3. Aplicamos el método de Gauss Jordan:}

\left[\begin{array}{ccc|c}1 & 0 & 0 & 40.43 \\0 & 1 & 0 & 19.14 \\0 & 0 & 1 & 25.43 \\\end{array}\right]

\text{4. Los niveles de producción necesarios son:}

x1 = 40.43 \\x2 = 19.14 \\x3 = 25.43

(x1, x2, x3) = (40.43, 19.14, 25.43)

Frequently asked questions (FAQs)
What is the rule for congruence of triangles related to SAS criterion?
+
What is the value of arctan(1) + arcsin(1/2)?
+
What is the square root of 584
+
New questions in Mathematics
8x²-30x-10x²+70x=-30x+10x²-20x²
-6n+5=-13
The sum of an infinite geometric series is 13,5 The sum of the same series, calculated from the third term is 1,5. Q. Calculate r if r>0.
Since one of the three integers whose product is (-60) is (+4), write the values that two integers can take.
A, B, C and D are numbers; If ABCD = 23, What is the result of ABCD BCDA CDAB DABC operation?
Determine the momentum of a 20 kg body traveling at 20 m/s.
The sum of two numbers is equal to 58 and the largest exceeds by at least 12. Find the two numbers
If you randomly selected one person from the 900 subjects in this study, what is the probability that the person exhibits the minimum BMI?
How much does the average college student spend on food per month? A random sample of 50 college students showed a sample mean $670 with a standard deviation $80. Obtain the 95% confidence interval for the amount college students spend on food per month.
3+7
-1%2F2x-4%3D18
Next%C3%B3n%2C+we+are+given+a+series+of+Tri%C3%A1angles+Right%C3%A1angles+%3Cbr%2F%3Ey+in+each+one+of+them+ are+known+2%28two%29+measurements+of+sides.+%3Cbr%2F%3Elet's+determine+all+trigonom%C3%A9tric+ratios.
5x+13+7x-10=99
Let X be a discrete random variable such that E(X)=3 and V(X)=5. Let 𝑌 = 2𝑋^2 − 3𝑋. Determine E(Y).
Kaya deposits 25,000 into an account that earns 3% interest compounded monthly. How much does Kaya have in the account after 6 years 8 months? Round to the nearest cent. 32,912.50 30,000 29,923.71 30,527.45
Cuboid containers (open at the top) should be examined with regard to their volume. The figure below shows a network of such containers (x ∈ Df). Determine a function ƒ (assignment rule and definition area D) that describes the volume of these containers and calculate the volume of such a container if the content of the base area is 16 dm². Show that this function f has neither a local maximum nor a global maximum
there are 500,000 bacteria at the end of a pin point. 1000 bacteria can make a person sick. then bacteria at the tip of a pin point can make 500 people sick. Also, many people do not know that bacteria can (reproduce). Let's say there are 5 bacteria and we leave it for 15 minutes. bacteria will multiply to 10. if left for up to 30 minutes, 20 bacteria will form. if left up to 45 minutes. bacteria will multiply up to 40. every 15 minutes the bacteria will double 2. if you start with five bacteria that reproduce every 15 minutes, how manu bacteria would you have after 12 hours ?
In a school playground When going out for recess, 80 men and 75 women coexist, the Patio measures 10 meters For 40 meters (what will be the population density in the break
Write decimal as the fraction 81/125 simplified
Find the orthogonal projection of a point A = (1, 2, -1) onto a line passing through the points Pi = (0, 1, 1) and P2 = (1, 2, 3).