1. Convert the annual rate to a semi-annual rate:
\text{Semi-annual rate} = \frac{0.155}{2} = 0.0775
2. Calculate the total number of compounding periods:
\text{Total periods} = 2 \times 5 = 10
3. Apply the present value formula:
PV = \frac{12,444}{(1 + 0.0775)^{10}}
4. Compute \( (1.0775)^{10} \):
(1.0775)^{10} \approx 2.0806
5. Find the present value:
PV = \frac{12,444}{2.0806} \approx 5,983.23
So, the answer is:
PV \approx 5,983.23