Question

To celebrate the five-year anniversary of a consultancy specializing in information technology, the administrator decided to draw 3 different qualification courses among its 10 employees. Considering that the same employee cannot be drawn more than once, the total number of different ways of drawing among employees is:

79

likes393 views

Neal

4.5

54 Answers

Para encontrar o número total de maneiras diferentes de sortear 3 cursos distintos entre 10 funcionários, podemos usar o conceito de combinação.

A fórmula para calcular a combinação de n elementos tomados de k em k é dada por:

C(n,k) = \frac{n!}{k!(n-k)!}

Onde "n!" representa o fatorial de n.

Aplicando essa fórmula ao nosso problema, temos:

C(10,3) = \frac{10!}{3!(10-3)!}

Simplificando a expressão:

C(10,3) = \frac{10!}{3!7!}

Calculando os fatoriais:

C(10,3) = \frac{10 \times 9 \times 8 \times 7!}{3! \times 7!}

C(10,3) = \frac{10 \times 9 \times 8}{3 \times 2 \times 1}

C(10,3) = 120

Portanto, o total de maneiras diferentes de sortear 3 cursos distintos entre os 10 funcionários é igual a 120.

\textbf{Resposta:} O total de maneiras diferentes de sortear 3 cursos distintos entre os funcionários é 120.

A fórmula para calcular a combinação de n elementos tomados de k em k é dada por:

Onde "n!" representa o fatorial de n.

Aplicando essa fórmula ao nosso problema, temos:

Simplificando a expressão:

Calculando os fatoriais:

Portanto, o total de maneiras diferentes de sortear 3 cursos distintos entre os 10 funcionários é igual a 120.

\textbf{Resposta:} O total de maneiras diferentes de sortear 3 cursos distintos entre os funcionários é 120.

Frequently asked questions (FAQs)

Math question: "What is the surface area of a cube with side length s?"

+

What is the interior angle sum of a triangle?

+

Math Question: If log base 2 of x equals 3, what is x?

+

New questions in Mathematics