Question

# To celebrate the five-year anniversary of a consultancy specializing in information technology, the administrator decided to draw 3 different qualification courses among its 10 employees. Considering that the same employee cannot be drawn more than once, the total number of different ways of drawing among employees is:

79

likes
393 views

## Answer to a math question To celebrate the five-year anniversary of a consultancy specializing in information technology, the administrator decided to draw 3 different qualification courses among its 10 employees. Considering that the same employee cannot be drawn more than once, the total number of different ways of drawing among employees is:

Neal
4.5
71 Answers
Para encontrar o número total de maneiras diferentes de sortear 3 cursos distintos entre 10 funcionários, podemos usar o conceito de combinação.

A fórmula para calcular a combinação de n elementos tomados de k em k é dada por:

C$n,k$ = \frac{n!}{k!$n-k$!}

Onde "n!" representa o fatorial de n.

Aplicando essa fórmula ao nosso problema, temos:

C$10,3$ = \frac{10!}{3!$10-3$!}

Simplificando a expressão:

C$10,3$ = \frac{10!}{3!7!}

Calculando os fatoriais:

C$10,3$ = \frac{10 \times 9 \times 8 \times 7!}{3! \times 7!}
C$10,3$ = \frac{10 \times 9 \times 8}{3 \times 2 \times 1}
C$10,3$ = 120

Portanto, o total de maneiras diferentes de sortear 3 cursos distintos entre os 10 funcionários é igual a 120.

\textbf{Resposta:} O total de maneiras diferentes de sortear 3 cursos distintos entre os funcionários é 120.

Frequently asked questions $FAQs$
Question: If a triangle has side lengths of 7 cm, 9 cm, and 12 cm, what is the area of the triangle using Heron's Formula?
+
Math question: In a circle, if the angle at the circumference is half the central angle, and the central angle measures 60 degrees, what is the measure of the angle at the circumference?
+
What is the value of x in the equation 2x + 5 = 15?
+