1. Calculate each term of the Fibonacci sequence up to the 17th term:
- \( F_1 = 0 \)
- \( F_2 = 1 \)
- \( F_3 = F_2 + F_1 = 1 \)
- \( F_4 = F_3 + F_2 = 2 \)
- \( F_5 = F_4 + F_3 = 3 \)
- \( F_6 = F_5 + F_4 = 5 \)
- \( F_7 = F_6 + F_5 = 8 \)
- \( F_8 = F_7 + F_6 = 13 \)
- \( F_9 = F_8 + F_7 = 21 \)
- \( F_{10} = F_9 + F_8 = 34 \)
- \( F_{11} = F_{10} + F_9 = 55 \)
- \( F_{12} = F_{11} + F_{10} = 89 \)
- \( F_{13} = F_{12} + F_{11} = 144 \)
- \( F_{14} = F_{13} + F_{12} = 233 \)
- \( F_{15} = F_{14} + F_{13} = 377 \)
- \( F_{16} = F_{15} + F_{14} = 610 \)
- \( F_{17} = F_{16} + F_{15} = 987 \)
2. Add all terms from \( F_1 \) to \( F_{17} \):
S_{17} = F_1 + F_2 + F_3 + \ldots + F_{17} = 0 + 1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 + 89 + 144 + 233 + 377 + 610 + 987 = 2583
3. The sum of the Fibonacci sequence up to the 17th term is:
2583