1. Convert an annual discount rate of 5% to a monthly discount rate:
r = \frac{0.05}{12} = 0.0041667
2. Calculate the total number of payments:
n = 8 \times 12 = 96
3. Determine the present value of an annuity using the formula:
PV = P \times \frac{1 - (1 + r)^{-n}}{r}
Substitute \( P = 200 \), \( r = 0.0041667 \), and \( n = 96 \), we get:
PV = 200 \times \frac{1 - (1 + 0.0041667)^{-96}}{0.0041667}
4. Compute the value inside the expression:
(1 + 0.0041667)^{-96} \approx 0.66911
5. Subtract the value from 1:
1 - 0.66911 = 0.33089
6. Divide by the monthly interest rate:
\frac{0.33089}{0.0041667} \approx 7940.94
7. Multiply by the payment amount:
PV=200\times7940.94\approx15797.86
Answer:
PV=15797.86