1. Use the formula for simple interest to find the amount of each investment after time \(t\):
A_1 = 1080000(1 + 0.10t)
A_2 = 1300000(1 + 0.005 \times 12t)
2. Set the amounts of the two investments equal to each other:
1080000(1 + 0.10t) = 1300000(1 + 0.005 \times 12t)
3. Simplify and solve for \(t\):
1080000 + 1080000 \times 0.10 t = 1300000 + 1300000 \times 0.005 \times 12 t
1080000 + 108000 \, t = 1300000 + 78000 \, t
108000\,t-78000\,t=1300000-1080000
30000\,t=220000
t=\frac{220000}{30000}=\frac{22}{3}\approx7\text{ years and 4 months}
Answer: 7 years and 4 months