1. Let's define:
- $\rho_{\text{fish}} = 1.08 \, \text{g/cm}^3$ (density of the fish with airbags crushed)
- $\rho_{\text{air}} = 0.00121 \, \text{g/cm}^3$ (density of air)
- $\rho_{\text{water}} = 1.025 \, \text{g/cm}^3$ (typical density of saltwater)
2. Use the formula for average density of the fish with inflated airbags:
\rho_{\text{average}} = \frac{V_{\text{fish}} \cdot \rho_{\text{fish}} + V_{\text{air}} \cdot \rho_{\text{air}}}{V_{\text{total}}},
where $V_{\text{fish}} + V_{\text{air}} = V_{\text{total}}$.
3. The condition is $\rho_{\text{average}} = \rho_{\text{water}}$.
4. Solve for the fraction of the volume of air, $\frac{V_{\text{air}}}{V_{\text{total}}}$:
\rho_{\text{water}} = \frac{V_{\text{fish}} \cdot \rho_{\text{fish}} + V_{\text{air}} \cdot \rho_{\text{air}}}{V_{\text{total}}},
V_{\text{air}} = V_{\text{total}} - V_{\text{fish}},
\rho_{\text{water}} = \frac{(V_{\text{total}} - V_{\text{air}}) \cdot \rho_{\text{fish}} + V_{\text{air}} \cdot \rho_{\text{air}}}{V_{\text{total}}},
\rho_{\text{water}} = \rho_{\text{fish}} - \frac{V_{\text{air}} \cdot \rho_{\text{fish}} - V_{\text{air}} \cdot \rho_{\text{air}}}{V_{\text{total}}},
V_{\text{air}} = V_{\text{total}} \cdot \frac{\rho_{\text{fish}} - \rho_{\text{water}}}{\rho_{\text{fish}} - \rho_{\text{air}}}.
5. The fraction is:
\frac{V_{\text{air}}}{V_{\text{total}}} = \frac{\rho_{\text{fish}} - \rho_{\text{water}}}{\rho_{\text{fish}} - \rho_{\text{air}}} = \frac{1.08 - 1.025}{1.08 - 0.00121}.
6. Calculate the fraction:
\frac{V_{\text{air}}}{V_{\text{total}}} \approx \frac{0.055}{1.07879} \approx 0.051.
7. The fish must inflate the air bags approximately:
5.1\% of its total volume to achieve the desired average density.