\text{PQ} = \text{Precipitação} \times \text{Área de drenagem}
= 2500 \frac{\text{mm}}{\text{ano}} \times 10000 \text{km}^2
= \left(2500 \times 10^{-3} \frac{\text{m}}{\text{ano}} \right) \times \left(10000 \times 10^6 \text{m}^2\right)
= 25000 \times 10^3 \text{m}^3/\text{ano}
= 2.5 \times 10^{10} \text{m}^3/\text{ano}
Q = \text{Vazão} \times \text{Tempo}
= 200\frac{\text{m}^3}{\text{s}} \times (365 \times 24 \times 60 \times 60)\frac{\text{s}}{\text{ano}}
= 200 \frac{\text{m}^3}{\text{s}} \times 31536000 \frac{\text{s}}{\text{ano}}
= 6.3072 \times 10^9 \text{m}^3/\text{ano}
ET = \text{What we need to calculate} = PQ - Q
= 2.5 \times 10^{10} - 6.3072 \times 10^9 \text{m}^3/\text{ano}
= 1.86928 \times 10^{10} \text{m}^3/\text{ano}
To transform the result to mm (per year), divide it by the area again and then express in mm/year.
ET = \frac{1.86928 \times 10^{10} \text{m}^3/\text{ano}}{10^7 \text{m}^2}
ET = 1869.28 \text{mm/ano}
Coeficiente de escoamento = \frac{\text{Q}}{PQ}
= \frac{6.3072 \times 10^9 \text{m}^3/\text{ano}}{2.5 \times 10^{10} \text{m}^3/\text{ano}}
= 0.2523
Now calculating average flow for a sub-basin of 2000 km^2:
Q_{sub} = Coeficiente de escoamento \times PQ_{sub}
= 0.2523 \times (2500 \times 10^{-3} \frac{\text{m}}{\text{ano}} \times 2000 \times 10^6 \text{m}^2)
= 0.2523 \times (5 \times 10^9 \text{m}^3/\text{ano})
= 1.2615\times 10^9 \text{m}^3/\text{ano}
Convert this to m^3/s:
Q_{sub}= \frac{1.2615\times 10^9 \frac{\text{m}^3}{\text{ano}}}{365 \times 24 \times 60 \times 60 \text{s}}
= \frac{1.2615\times 10^9}{31536000} \frac{\text{m}^3}{\text{s}}
≈ 40 \text{m}^3/\text{s}