To find the missing components of the vector, we start by using the direction cosines and the given component along the x-axis:
Given:
- Component along x-axis, V_x = 7
- Direction cosines: m = \cos(65°), n = \cos(40°)
1. Find l using the equation l^2 + m^2 + n^2 = 1:
l = \sqrt{1 - m^2 - n^2} = \sqrt{1 - \cos^2(65°) - \cos^2(40°)}
2. Calculate l:
l = \sqrt{1 - \cos^2(65°) - \cos^2(40°)} \approx \sqrt{1 - 0.4226 - 0.7660} \approx 0.201
3. Find the magnitude of the vector, V:
V = \frac{V_x}{l} = \frac{7}{0.201} \approx 34.83
4. Calculate the components along y and z axes:
- V_y = V \cdot m \approx 34.83 \cdot \cos(65°) \approx 6.11
- V_z = V \cdot n \approx 34.83 \cdot \cos(40°) \approx 11.07
Therefore, the missing components of the vector are:
- V_y \approx 6.11
- V_z \approx 11.07
The angle \phi_x between the vector and the x-axis is approximately 61.03°.
\boxed{V_y \approx 6.11, V_z \approx 11.07, \phi_x \approx 61.03°}