Question

Determine the force with which two magnetic poles are attracted, one north of two webers and one 5 of eight webers separated 40 cm in a vacuum.

126

likes
631 views

Answer to a math question Determine the force with which two magnetic poles are attracted, one north of two webers and one 5 of eight webers separated 40 cm in a vacuum.

Expert avatar
Corbin
4.6
107 Answers
La fuerza de atracción o repulsión entre dos polos magnéticos puede determinarse mediante la ley de Ampère, que establece que la fuerza magnética entre dos polos es directamente proporcional al producto de sus intensidades magnéticas y inversamente proporcional al cuadrado de la distancia que los separa.

La fórmula para calcular la fuerza entre dos polos magnéticos es:

F = \dfrac{\mu_0 \cdot m_1 \cdot m_2}{4\pi \cdot d^2}

Donde:
- F es la fuerza magnética,
- \mu_0 es la permeabilidad magnética del vacío ( 4\pi \times 10^{-7} \, T \cdot m/A ),
- m_1 y m_2 son las intensidades magnéticas de los polos (en webers),
- d es la distancia que los separa (en metros).

Dado que los dos polos tienen intensidades magnéticas de 2 y 8 webers, respectivamente, y están separados por 40 cm (0.4 m) en el vacío, podemos sustituir estos valores en la fórmula para calcular la fuerza:

F = \dfrac{(4\pi \times 10^{-7} \, T \cdot m/A) \cdot 2 \, Wb \cdot 8 \, Wb}{4\pi \cdot (0.4 \, m)^2}

Simplificando la expresión, obtenemos:

F = \dfrac{16 \times 10^{-7} \, T \cdot m \cdot Wb}{0.16 \, m^2}

F = 0.1 \, N

Entonces, la fuerza con la que se atraen los dos polos magnéticos es de 0.1 N.

\textbf{Respuesta:} La fuerza de atracción entre los dos polos magnéticos es de 0.1 N.

Frequently asked questions (FAQs)
Question: Find the 3rd derivative of f(x) = 3x^4 - 2x^3 + 5x^2 - 6x + 1.
+
What is the average of the following test scores: 85, 92, 78, 88, and 90?
+
What is the vertex of a parabola with the equation 𝑦 = 2𝑥² + 3𝑥 - 1?
+
New questions in Mathematics
Solution to the equation y'' - y' - 6y = 0
Exercise 4 - the line (AC) is perpendicular to the line (AB) - the line (EB) is perpendicular to the line (AB) - the lines (AE) and (BC) intersect at D - AC = 2.4 cm; BD = 2.5 cm: DC = 1.5 cm Determine the area of triangle ABE.
Using the integration by parts method, calculate the integral of [x².ln(1/x)]dx: x 4 /4 x³/6 x 4 /8 x³/3 x 4 /6
The equation of the circle that passes through (5,3) and is tangent to the abscissa axis at x=2 is a.(x-2)^2 (y 3)^2 = 9 b.(x-2)^2 (y-3)^2 = 9 c.(x-2)^2 (y-3)^2 = 4 d.(x-2)^2 (y 1)^2 = 4 e.(x-2)^2 (y-1)^2 = 4
Sean must chose a 6- digit PIN number for his online banking account.Each digit can be chosen from 0 to 9. How many different possible PIN numbers can sean chose.
If the midpoint of point A on the x=3 line and point B on the y=-2 line is C(-2,0), what is the sum of the ordinate of point A and the abscissa of point B?
41/39 - 1/38
A warehouse employs 23 workers on first​ shift, 19 workers on second​ shift, and 12 workers on third shift. Eight workers are chosen at random to be interviewed about the work environment. Find the probability of choosing exactly five first ​-shift workers.
28 is 92 percent of what?
Given (3x+2)E [2;14] how much money (in soles) does Sophia have if numerically it is the greatest value of x?
TEST 123123+1236ttttt
Two minus log 3X equals log (X over 12)
The population of Pittsburgh, Pennsylvania, fell from 520,117 in 1970 to 305,704 in 2010. Write an exponential function P(t) modeling the population t years after 1970. Round the growth factor to the nearest tem thousandth.
Solve equations by equalization method X-8=-2y 2x+y=7
A cell phone company offers two calling plans. Plan A: $20 per month plus 5 cents for each minute, or Plan B: $30 per month plus 3 cents for each minute. [2] Write an equation to describe the monthly cost (a) C (in $) in terms of the time m (in minutes) of phone calls when Plan A is applied.
factor the polynomial completely over the set of complex numbers b(x)=x^4-2x^3-17x^2+4x+30
Consider mixing 150 ml, 0.1M, HCI with 100 ml, 0.2M, KOH solution. Determine the pH of final solution.
the product of a 2-digit number and a 3-digit number is about 50000, what are these numbers
Determine the general solution of the equation y′+y=e−x .
8(x+4) -4=4x-1