Question

determines for which values of k the parabola of equation y= x^2-2(k-3)x-k+15 has at least one point in common with the x axis and intersects the y axis at a point of positive ordinate

280

likes
1402 views

Answer to a math question determines for which values of k the parabola of equation y= x^2-2(k-3)x-k+15 has at least one point in common with the x axis and intersects the y axis at a point of positive ordinate

Expert avatar
Esmeralda
4.7
101 Answers
Per determinare i valori di k per cui la parabola interseca l'asse delle x e l'asse y nei punti descritti, dobbiamo considerare le condizioni:

1. La parabola interseca l'asse delle x se il discriminante della funzione quadratica è maggiore di zero.
2. La parabola interseca l'asse y in un punto di ordinata positiva se k è tale che il termine noto della parabola è positivo.

La parabola è definita dall'equazione y = x^2 - 2(k-3)x - k + 15 .

1. Per determinare quando la parabola interseca l'asse delle x, calcoliamo il discriminante:

Il discriminante della funzione quadratica è dato da \Delta = b^2 - 4ac , dove nella forma generale y = ax^2 + bx + c abbiamo a = 1 , b = -2(k-3) e c = -k + 15 .

Quindi, \Delta = (-2(k-3))^2 - 4(1)(-k+15) = 4(k^2 - 6k + 9) + 4k - 60 = 4k^2 - 24k + 36 + 4k - 60 = 4k^2 - 20k - 24 .

La parabola interseca l'asse delle x se \Delta > 0 :

4k^2 - 20k - 24 > 0 .

2. Per determinare quando la parabola interseca l'asse y in un punto di ordinata positiva, dobbiamo assicurarci che il termine noto -k + 15 sia positivo:

-k + 15 > 0 .

Ora risolviamo sia l'inequazione del discriminante che l'inequazione relativa al termine noto per trovare i valori di k che soddisfano entrambe le condizioni.

1. Per \Delta = 4k^2 - 20k - 24 > 0 :
4k^2 - 20k - 24 > 0 \implies k^2 - 5k - 6 > 0 \implies (k - 6)(k + 1) > 0.

Le soluzioni sono k oppure k > 6 .

2. Per
-k + 15 > 0 :
-k + 15 > 0 \implies k

Quindi, i valori di k che soddisfano entrambe le condizioni sono k \in (-\infty, -1) \cup (6, 15) .

\boxed{k \in (-\infty, -1) \cup (6, 15)} .

Frequently asked questions (FAQs)
What is the sine ratio of angle A in a right triangle with opposite side measuring 4 and hypotenuse measuring 6?
+
Math question:What is the limit as x approaches 2 of (x^2 + ln(x))/(x - 2)?
+
Question: What is the mean, mode, median, range, and average of the following dataset: 10, 15, 20, 15, 25, 15?
+
New questions in Mathematics
Calculate to represent the function whose graph is a line that passes through the points (1,2) and (−3,4). What is your slope?
reduction method 2x-y=13 x+y=-1
The profit G of the company CHUNCHES SA is given by G(x) = 3×(40 – ×), where × is the quantity of items sold. Find the maximum profit.
(5u + 6)-(3u+2)=
2x2 and how much?
sin 30
Two business partners have a bank balance of $17,942.00. After the first year their interest brings their balance to $18,928.91. What rate of interest is earned?
Convert 5/9 to a decimal
At the dance there are 150 boys the rest are girls. If 65% are girls what is the total amount in the room
392929-9
The grading on a $159,775 house comes to $3974.75. What percent of the total cost is this? (Express your answer to the nearest hundredth percent.)
Determine the Linear function whose graph passes through the points (6, -2) and has slope 3.
We have two distributions: A (M = 66.7, 95% CI = [60.3, 67.1]) / B (M = 71.3 95% CI = [67.7, 74.9]). Erin maintains that B is significantly larger than A. Provide your opinion on Erin’s argument and justify your opinion.
a) Statistics scores are normally distributed with the mean of 75 and standard deviation of 7. What is the probability that a student scores between 80 and 88
Let G be the center of gravity of triangle ABC. We draw through A a parallel to BC on which we take a point D so that DG⊥BG. If the area of the quadrilateral AGBD is equal to s, show that AC·BD≥2·s.
If the mean of the following numbers is 17, find the c value. Produce an algebraic solution. Guess and check is unacceptable. 12, 18, 21, c, 13
A 20-year old hopes to retire by age 65. To help with future expenses, they invest $6 500 today at an interest rate of 6.4% compounded annually. At age 65, what is the difference between the exact accumulated value and the approximate accumulated value (using the Rule of 72)?
Determine the general solution of the equation y′+y=e−x .
It costs a manufacturer $2,500 to purchase the tools to manufacture a certain homemade item. If the cost for materials and labor is 60¢ per item produced, and if the manufacturer can sell each item for 90¢, find how many items must he produce and sell to make a profit of $2000?
Write a linear equation in the slope-intercept form. Slope of the line is -1 and goes through (8,4)