^x+1 +1 describe transformation","","Solution:\u003Cbr />\n1. Given function:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = -24^{x+1} + 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Base function:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = 4^x\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Identify transformations step-by-step:\u003Cbr />\n - **Translation horizontally**: The function has \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x+1\u003C/math-field>\u003C/math-field> as the exponent instead of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>. This indicates a horizontal shift to the left by 1 unit.\u003Cbr />\n - **Vertical stretch and reflection**: The coefficient before \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4\u003C/math-field>\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - **Vertical stretch**: The factor \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2\u003C/math-field>\u003C/math-field> indicates that the function is stretched vertically by a factor of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - **Reflection**: The negative sign indicates a reflection across the x-axis.\u003Cbr />\n - **Vertical translation**: The \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>+1\u003C/math-field>\u003C/math-field> outside the function indicates a vertical shift upwards by 1 unit.\u003Cbr />\n\u003Cbr />\n4. Describe the complete transformation:\u003Cbr />\n - The function \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = 4^x\u003C/math-field>\u003C/math-field> undergoes the following transformations: a horizontal shift to the left by 1 unit, a vertical stretch by a factor of 2, reflection across the x-axis, and finally a vertical shift upwards by 1 unit.",1255,251,"y-2-4-x-1-1-describe-transformation",{"id":44,"category":36,"text_question":45,"photo_question":38,"text_answer":46,"step_text_answer":8,"step_photo_answer":8,"views":47,"likes":48,"slug":49},538086,"Add the polynomials gx=x3-2x2+3x-1+4x2-x+2","Solution: \u003Cbr />\n1. Write down the given polynomials:\u003Cbr />\n- First polynomial: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>gx = x^3 - 2x^2 + 3x - 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Second polynomial: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x^2 - x + 2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Align and add the polynomials term by term:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>gx = x^3 - 2x^2 + 3x - 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x^2 - x + 2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Add the corresponding like terms:\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^2\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2x^2 + 4x^2 = 2x^2\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x - x = 2x\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For constant terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-1 + 2 = 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. The resulting polynomial after addition is:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3 + 2x^2 + 2x + 1\u003C/math-field>\u003C/math-field>",739,148,"add-the-polynomials-g-x-x3-2x2-3x-1-4x2-x-2",{"id":51,"category":36,"text_question":52,"photo_question":38,"text_answer":53,"step_text_answer":8,"step_photo_answer":8,"views":54,"likes":55,"slug":56},538085,"R=3m. Calculate the volume of the sphere. Round to the nearest tenth if necessary","1. The formula for the volume of a sphere is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi R^3 \u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. Substitute the given radius \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> R = 3 \\, \\text{m} \u003C/math-field>\u003C/math-field> into the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi 3^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 3^3 = 27 \u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Thus, the volume becomes:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi \\times 27 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify the expression:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4 \\times 27}{3} \\pi = 36 \\pi \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Use the approximation \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\pi \\approx 3.1416 \u003C/math-field>\u003C/math-field> :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 36 \\times 3.1416 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. Calculate the approximate volume:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V\\approx113.0973\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>8. Round to the nearest tenth:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 113.1 \\, \\text{m}^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Therefore, the volume of the sphere is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 113.1 \\, \\text{m}^3 \u003C/math-field>\u003C/math-field> .",1203,241,"r-3m-calculate-the-volume-of-the-sphere-round-to-the-nearest-tenth-if-necessary",{"id":58,"category":36,"text_question":59,"photo_question":38,"text_answer":60,"step_text_answer":8,"step_photo_answer":8,"views":61,"likes":62,"slug":63},538084,"Width of 12 in. Calculate the volume of the sphere. Round to the nearest tenth if necessary","1. Identify the radius of the sphere. Given the width is 12 inches, the diameter is 12 inches. Therefore, the radius is half of the diameter:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> r = \\frac{12}{2} = 6 \\, \\text{in} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Use the formula for the volume of a sphere:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi r^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute the radius into the formula:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi 6^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Calculate:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi \\times 216 = \\frac{864}{3} \\pi = 288 \\pi \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Approximate using \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\pi \\approx 3.1416 \u003C/math-field>\u003C/math-field>:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 288 \\times 3.1416 = 904.8 \\, \\text{in}^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. The volume of the sphere, rounded to the nearest tenth, is approximately:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 904.8 \\, \\text{in}^3 \u003C/math-field>\u003C/math-field>",278,56,"width-of-12-in-calculate-the-volume-of-the-sphere-round-to-the-nearest-tenth-if-necessary",{"id":65,"category":36,"text_question":66,"photo_question":38,"text_answer":67,"step_text_answer":8,"step_photo_answer":8,"views":68,"likes":69,"slug":70},538083,"Calculate the volume tothenearesttenthofacubiccentimeter of a golf ball whose diameter is 4.267cm","1. The formula for the volume of a sphere is given by \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi r^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. The diameter of the golf ball is given as 4.267 cm, so the radius is half of that: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>r = \\frac{4.267}{2} = 2.1335 \\, \\text{cm}\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>3. Substitute the radius into the volume formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi 2.1335^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Calculate the cube of the radius: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2.1335^3 = 9.707432537375\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>5. Substitute this back into the formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V=\\frac{4}{3}\\pi\\times9.707432537375\\approx40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>6. The volume of the golf ball is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .",1440,288,"calculate-the-volume-to-the-nearest-tenth-of-a-cubic-centimeter-of-a-golf-ball-whose-diameter-is-4-267cm",{"id":72,"category":36,"text_question":73,"photo_question":38,"text_answer":74,"step_text_answer":8,"step_photo_answer":8,"views":75,"likes":76,"slug":77},538082,"Find the length of each base edge tothenearesttenthofameter of the 24m tall glass square pyramids of the Muttart Conservatory in Alberta, Canada, if each contains 5280m^3 of space","1. Volume V of a square pyramid is given by the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{1}{3} B h\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>where B is the area of the base and h is the height of the pyramid.\u003Cbr>\u003Cbr>2. Given that the height h = 24 m and the volume V = 5280 m^3.\u003Cbr>\u003Cbr>3. The base is square, so if the side length of the base is s, then:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>B = s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Substituting into the volume formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = \\frac{1}{3} s^2 \\times 24\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify and solve for s^2:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = 8 s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s^2 = \\frac{5280}{8} = 660\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Solve for s:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{660} \\approx 25.7\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. To find the length of each base edge to the nearest tenth of a meter, compute:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s \\approx 25.7 \\, \\text{m}\u003C/math-field>\u003C/math-field>",418,84,"find-the-length-of-each-base-edge-to-the-nearest-tenth-of-a-meter-of-the-24m-tall-glass-square-pyramids-of-the-muttart-conservatory-in-alberta-canada-if-each-contains-5280m-3-of-space",{"id":79,"category":36,"text_question":80,"photo_question":38,"text_answer":81,"step_text_answer":8,"step_photo_answer":8,"views":82,"likes":83,"slug":84},538081,"An observer is 150 meters away\n distance of a hot air balloon online\n straight line at ground level. From your position,\n measures an elevation angle of 40Β° up to\n the base of the balloon. At what height is\n find the hot air balloon?","Solution:\u003Cbr />\n1. Dado:\u003Cbr />\n- Distancia horizontal desde el observador hasta la base del globo: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>d = 150 \\ m\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Ángulo de elevaciΓ³n: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\theta = 40^{\\circ}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Usamos la funciΓ³n tangente para encontrar la altura \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h\u003C/math-field>\u003C/math-field> del globo aerostΓ‘tico. La tangente de un Γ‘ngulo en un triΓ‘ngulo rectΓ‘ngulo es la razΓ³n entre la altura y la distancia horizontal:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tantheta = \\frac{h}{d}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Sustituimos los valores conocidos en la ecuaciΓ³n:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan40circ = \\frac{h}{150}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Resolvemos para \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h = 150 \\times \\tan40circ\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Calculamos el valor numΓ©rico:\u003Cbr />\n* Usando una calculadora, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan40circ \\approx 0.8391\u003C/math-field>\u003C/math-field>\u003Cbr />\n* Entonces: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h \\approx 150 \\times 0.8391 = 125.865 \\ m\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nLa altura del globo aerostΓ‘tico es aproximadamente \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>125.865 \\ m\u003C/math-field>\u003C/math-field>.",667,133,"an-observer-is-150-meters-away-distance-of-a-hot-air-balloon-online-straight-line-at-ground-level-from-your-position-measures-an-elevation-angle-of-40-up-to-the-base-of-the-balloon-at-what-hei",{"id":86,"category":36,"text_question":87,"photo_question":38,"text_answer":88,"step_text_answer":8,"step_photo_answer":8,"views":89,"likes":90,"slug":91},538080,"A plane ticket has gone up 18%, now costing 4,720.Howmuchdiditcostbeforetheincrease?","\u003Cmathβˆ’fieldreadβˆ’onlydefaultβˆ’mode=\"inlineβˆ’math\"class=\"mathβˆ’expression\">\u003Cmathβˆ’fieldreadβˆ’only>textSolution:\u003C/mathβˆ’field>\u003C/mathβˆ’field>\u003Cbr/>\n1.Definevariables:\u003Cbr/>\nβˆ’Let\u003Cmathβˆ’fieldreadβˆ’onlydefaultβˆ’mode=\"inlineβˆ’math\"class=\"mathβˆ’expression\">\u003Cmathβˆ’fieldreadβˆ’only>P\u003C/mathβˆ’field>\u003C/mathβˆ’field>betheoriginalpriceoftheplaneticket.\u003Cbr/>\nβˆ’\u003Cmathβˆ’fieldreadβˆ’onlydefaultβˆ’mode=\"inlineβˆ’math\"class=\"mathβˆ’expression\">\u003Cmathβˆ’fieldreadβˆ’only>P\u003C/mathβˆ’field>\u003C/mathβˆ’field>increasedby18\\frac{x}{15}=\\frac{4}{3}\u003C/mathβˆ’field>\n\u003Cbr>\n\u003C/div>\n\n\u003Cdiv>\n\n\u003Cmathβˆ’fieldstyle=\"fontβˆ’size:16px;padding:8px;borderβˆ’radius:8px;border:1pxsolidrgba(0,0,0,.3);boxβˆ’shadow:000rgba(0,0,0,.2)\n\"readβˆ’only>x=20\u003C/math-field>\n    \u003Cbr>\n  \u003C/div>",467,93,"15-75-of",{"id":149,"category":36,"text_question":150,"photo_question":38,"text_answer":151,"step_text_answer":8,"step_photo_answer":8,"views":152,"likes":90,"slug":153},538067,"Naria Wants to build a perimeter wall fence around 400 sqm lot. The frontage of the lot is 20 meters. The wall height is 1.2 meters below the ground and 3.8 meters above the ground .\nThe cost of constructing the wall is 750 per square meter. Additionally,she plans to install a 5-meter-wide gate that costs β‚±50,000.\nHow much Maria spend in total for the wall and the gate\na. Php 281,250.00\nb. Php 106,250.00\nc. Php 331,250.00\nd. Php 218,250.00","1. Determine the dimensions of the lot. Given the frontage is 20 meters, calculate the other side using the area:\u003Cbr />\n   \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Area} = 20 \\times x = 400 \u003C/math-field>\u003C/math-field>\u003Cbr />\n   \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{400}{20} = 20 \\, \\text{meters} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Calculate the perimeter of the lot:\u003Cbr />\n   \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Perimeter} = 2 \\times (20 + 20) = 80 \\, \\text{meters} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Calculate the total height of the wall:\u003Cbr />\n   \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Total height} = 1.2 + 3.8 = 5 \\, \\text{meters} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Calculate the wall area excluding the gate:\u003Cbr />\n   \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Wall area} = (\\text{Perimeter} - \\text{Gate width}) \\times \\text{Total height} \u003C/math-field>\u003C/math-field>\u003Cbr />\n   \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Wall area} = (80 - 5) \\times 5 = 75 \\times 5 = 375 \\, \\text{sqm} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Calculate the cost of the wall:\u003Cbr />\n   \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Wall cost} = 375 \\times 750 = 281,250 \\, \\text{PHP} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Calculate total cost including the gate:\u003Cbr />\n   \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Total cost} = \\text{Wall cost} + \\text{Gate cost} \u003C/math-field>\u003C/math-field>\u003Cbr />\n   \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Total cost} = 281,250 + 50,000 = 331,250 \\, \\text{PHP} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Therefore, the total cost is: \u003Cbr />\n   \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Php} \\, 331,250.00 \u003C/math-field>\u003C/math-field>",727,"naria-wants-to-build-a-perimeter-wall-fence-around-400-sqm-lot-the-frontage-of-the-lot-is-20-meters-the-wall-height-is-1-2-meters-below-the-ground-and-3-8-meters-above-the-ground-the-cost-of-const",{"id":155,"category":36,"text_question":156,"photo_question":38,"text_answer":157,"step_text_answer":8,"step_photo_answer":8,"views":158,"likes":76,"slug":159},538066,"2. A rectangular lot has a\n30 meters.\nallocated along the frontage. What is the gross area\nfrontage of 18 meters and a depth of\nHowever, a public right of way of 3 meters is\nReve\nof\nthe\nlot?\na. 520 sqm\nb. 540 sqm\nC. 560 sqm\nd. 580 sqm\nReV","1. Calculate the area of the rectangular lot without the right of way:\u003Cbr />\n   \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{Area}_{\\text{total}} = \\text{frontage} \\times \\text{depth} = 18 \\, \\text{m} \\times 30 \\, \\text{m} = 540 \\, \\text{sqm} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. No need to subtract any area because the problem states that the right of way has already been accounted for in the dimensions provided.\u003Cbr />\n\u003Cbr />\n3. Therefore, the gross area of the lot remains:\u003Cbr />\n   \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 540 \\, \\text{sqm} \u003C/math-field>\u003C/math-field> \u003Cbr />\n   \u003Cbr />\nThus, the answer is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>540 \\, \\text{sqm}\u003C/math-field>\u003C/math-field>.",420,"2-a-rectangular-lot-has-a-30-meters-allocated-along-the-frontage-what-is-the-gross-area-frontage-of-18-meters-and-a-depth-of-however-a-public-right-of-way-of-3-meters-is-reve-of-the-lot-a-520-sq",{"id":161,"category":36,"text_question":162,"photo_question":38,"text_answer":163,"step_text_answer":8,"step_photo_answer":8,"views":164,"likes":165,"slug":166},538065,"A triangular lot has a base of 15 meters and heights of 10 meters . What is the total area of the lot ?","1. The formula for the area of a triangle is given by:\u003Cbr />\n\u003Cbr />\n   \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = \\frac{1}{2} \\times \\text{base} \\times \\text{height} \u003C/math-field>\u003C/math-field> \u003Cbr />\n\u003Cbr />\n2. Substitute the given values into the formula:\u003Cbr />\n\u003Cbr />\n   \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = \\frac{1}{2} \\times 15 \\times 10 \u003C/math-field>\u003C/math-field> \u003Cbr />\n\u003Cbr />\n3. Calculate the area:\u003Cbr />\n\u003Cbr />\n   \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = \\frac{1}{2} \\times 150 \u003C/math-field>\u003C/math-field> \u003Cbr />\n\u003Cbr />\n4. Simplify the expression:\u003Cbr />\n\u003Cbr />\n   \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = 75 \u003C/math-field>\u003C/math-field> \u003Cbr />\n\u003Cbr />\nTherefore, the total area of the lot is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>75 \\, \\text{square meters}\u003C/math-field>\u003C/math-field>.",425,85,"a-triangular-lot-has-a-base-of-15-meters-and-heights-of-10-meters-what-is-the-total-area-of-the-lot",{"id":168,"category":36,"text_question":169,"photo_question":38,"text_answer":170,"step_text_answer":8,"step_photo_answer":8,"views":171,"likes":172,"slug":173},538064,"4x+(x-3)=2x-(3x-4)+5","Solution:\u003Cbr />\n1. Simplify both sides of the equation.\u003Cbr />\n- Left side: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x + (x - 3) = 4x + x - 3 = 5x - 3\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Right side: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x - (3x - 4) + 5 = 2x - 3x + 4 + 5 = -x + 9\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. The equation is now: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5x - 3 = -x + 9\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Add \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> to both sides to eliminate the \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-x\u003C/math-field>\u003C/math-field> from the right side and simplify:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5x + x - 3 = 9\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify: \u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>6x - 3 = 9\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Add 3 to both sides to isolate terms with \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>6x = 9 + 3\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Simplify:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>6x = 12\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Divide both sides by 6 to solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = \\frac{12}{6}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n8. Simplify the fraction:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 2\u003C/math-field>\u003C/math-field>",1332,266,"4x-x-3-2x-3x-4-5",{"first":6,"last":175,"prev":8,"next":10},187,{"current_page":6,"from":6,"last_page":175,"links":177,"path":211,"per_page":212,"to":212,"total":213},[178,181,184,186,188,190,192,195,198,201,204,207,209],{"url":6,"label":179,"active":180},"1",true,{"url":10,"label":182,"active":183},"2",false,{"url":13,"label":185,"active":183},"3",{"url":16,"label":187,"active":183},"4",{"url":19,"label":189,"active":183},"5",{"url":22,"label":191,"active":183},"6",{"url":193,"label":194,"active":183},7,"7",{"url":196,"label":197,"active":183},8,"8",{"url":199,"label":200,"active":183},9,"9",{"url":202,"label":203,"active":183},10,"10",{"url":205,"label":206,"active":183},186,"186",{"url":175,"label":208,"active":183},"187",{"url":10,"label":210,"active":183},"Next »","https://api.math-master.org/api/question",20,3737,{"data":215},{"questions":216},[217,221,225,229,233,237,241,245,249,253,257,261,265,269,273,277,281,285,289,293],{"id":218,"category":36,"text_question":219,"slug":220},532046,"If you have a bag with 18 white balls and 2 black balls. What is the probability of drawing a white ball? And extracting a black one?","if-you-have-a-bag-with-18-white-balls-and-2-black-balls-what-is-the-probability-of-drawing-a-white-ball-and-extracting-a-black-one",{"id":222,"category":36,"text_question":223,"slug":224},532058,"11(4x-9)= -319","11-4x-9-319",{"id":226,"category":36,"text_question":227,"slug":228},533897,"A drawer contains three pairs of white socks, five pairs of black socks and two pairs of red socks. Caden randomly\nselects two pairs of socks on his way to the gym. What is the probability that both pairs of socks are black?","a-drawer-contains-three-pairs-of-white-socks-five-pairs-of-black-socks-and-two-pairs-of-red-socks-caden-randomly-selects-two-pairs-of-socks-on-his-way-to-the-gym-what-is-the-probability-that-both-p",{"id":230,"category":36,"text_question":231,"slug":232},533902,"For a temperature range between -3 degrees Celsius to 5 degrees Celsius, what is the temperature range in degrees Farenheight","for-a-temperature-range-between-3-degrees-celsius-to-5-degrees-celsius-what-is-the-temperature-range-in-degrees-farenheight",{"id":234,"category":36,"text_question":235,"slug":236},533933,"Additionally, the boss asked Armando to determine how many toy sales branches he would have in the fifteenth year, knowing that the first year they started with two branches, by the second they already had 5 branches and, by the third year, they had 8 branches.\n\n From the above, determine the number of branches it will have for the fifteenth year.","additionally-the-boss-asked-armando-to-determine-how-many-toy-sales-branches-he-would-have-in-the-fifteenth-year-knowing-that-the-first-year-they-started-with-two-branches-by-the-second-they-alread",{"id":238,"category":36,"text_question":239,"slug":240},534043,"The equation of the circle that passes through (5,3) and is tangent to the abscissa axis at x=2 is\n a.(x-2)^2 (y 3)^2 = 9\n b.(x-2)^2 (y-3)^2 = 9\n c.(x-2)^2 (y-3)^2 = 4\n d.(x-2)^2 (y 1)^2 = 4\n e.(x-2)^2 (y-1)^2 = 4","the-equation-of-the-circle-that-passes-through-5-3-and-is-tangent-to-the-abscissa-axis-at-x-2-is-a-x-2-2-y-3-2-9-b-x-2-2-y-3-2-9-c-x-2-2-y-3-2-4-d-x-2-2-y-1-2-4-e-x-2",{"id":242,"category":36,"text_question":243,"slug":244},534052,"-0.15/32.6","0-15-32-6",{"id":246,"category":36,"text_question":247,"slug":248},534055,"7/6-(-1/9)","7-6-1-9",{"id":250,"category":36,"text_question":251,"slug":252},534139,"(24, -7) is on the terminal arm of an angle in standard position.\nDetermine the exact values of the primary trigonometric functions.","24-7-is-on-the-terminal-arm-of-an-angle-in-standard-position-determine-the-exact-values-of-the-primary-trigonometric-functions",{"id":254,"category":36,"text_question":255,"slug":256},534176,"Three squares have a total area of 35.25 π‘π‘š2\r\n. The larger square has twice the side-length of the\r\nmiddle-sized square. The smaller square has its side length exactly 0.5 cm smaller than the\r\nmiddle-sixed square. Find the side lengths of each of the three squares.","three-squares-have-a-total-area-of-35-25-cm2-the-larger-square-has-twice-the-side-length-of-the-middle-sized-square-the-smaller-square-has-its-side-length-exactly-0-5-cm-smaller-than-the-middle",{"id":258,"category":36,"text_question":259,"slug":260},534214,"Nice's central library building is considered one of the most original in the world, as it is a mix between a sculpture and a work of habitable architecture. It was called La TΓͺte CarrΓ©e and is made up of part of a bust that supports a cube divided into five floors.\n It is known that the building has a total height of approximately 30 meters. It admits that the cubic part of the sculpture is parallel to the floor and has a volume of 2744 meters3\n Calculate, in meters, the height of the bust that supports the cube.\n Displays all the calculations you made.","nice-s-central-library-building-is-considered-one-of-the-most-original-in-the-world-as-it-is-a-mix-between-a-sculpture-and-a-work-of-habitable-architecture-it-was-called-la-tete-carree-and-is-made-u",{"id":262,"category":36,"text_question":263,"slug":264},534235,"Equine infectious anemia (EIA) is considered the main infectious disease in Brazilian equine farming, for which there is no effective vaccine or treatment. It is caused by a retrovirus of the genus Lentivirus, which affects horses, donkeys and mules and is transmitted in nature mainly by hematophagous insects of the genus Tabanidae.\n\n Researchers analyzed the records of 9,439 equids from Acre, submitted to the agar gel immunodiffusion test (AGID) for equine infectious anemia (EIA), between 1986 and 1996. Of these, 6199 tested positive for equine infectious anemia (EIA) .\n\n Knowing that the age of AIE-positive horses follows a Normal distribution with a mean of 5 years and a standard deviation of 1.5 years, determine the expected number of AIE-positive horses in the Acre sample that will be aged less than or equal to 3 years.\n\n\n\n ATTENTION: Provide the answer to exactly FOUR decimal places.","equine-infectious-anemia-eia-is-considered-the-main-infectious-disease-in-brazilian-equine-farming-for-which-there-is-no-effective-vaccine-or-treatment-it-is-caused-by-a-retrovirus-of-the-genus-le",{"id":266,"category":36,"text_question":267,"slug":268},534304,"2)A tourist has 15 pairs of pants in his hotel room closet. Suppose 5 are blue and the rest are black. The tourist leaves his room twice a day. He takes a pair of pants and puts them on, the tourist leaves the first pair of pants in the closet again and takes another one and puts them on. What is the probability that the two pants chosen are black?","2-a-tourist-has-15-pairs-of-pants-in-his-hotel-room-closet-suppose-5-are-blue-and-the-rest-are-black-the-tourist-leaves-his-room-twice-a-day-he-takes-a-pair-of-pants-and-puts-them-on-the-tourist-l",{"id":270,"category":36,"text_question":271,"slug":272},534357,"MAKING AN ARGUMENT You use synthetic division to divide f(x) by (x βˆ’ a) and find that the remainder equals 15. Your friend concludes that f (15) = a.\nIs your friend correct? Explain your reasoning.","making-an-argument-you-use-synthetic-division-to-divide-f-x-by-x-a-and-find-that-the-remainder-equals-15-your-friend-concludes-that-f-15-a-is-your-friend-correct-explain-your-reasoning",{"id":274,"category":36,"text_question":275,"slug":276},534462,"-5x=115","5x-115",{"id":278,"category":36,"text_question":279,"slug":280},534479,"Solve for B write your answer as a fraction or as a whole number. B-1/7=4","solve-for-b-write-your-answer-as-a-fraction-or-as-a-whole-number-b-1-7-4",{"id":282,"category":36,"text_question":283,"slug":284},534595,"The slope of the tangent line to the curve f(x)=4tan x at the point (Ο€/4,4)","the-slope-of-the-tangent-line-to-the-curve-f-x-4tan-x-at-the-point-4-4",{"id":286,"category":36,"text_question":287,"slug":288},534605,"9n + 7(-8 + 4k) use k=2 and n=3","9n-7-8-4k-use-k-2-and-n-3",{"id":290,"category":36,"text_question":291,"slug":292},534643,"6(k-7) -2=5","6-k-7-2-5",{"id":294,"category":36,"text_question":295,"slug":296},534645,"Find the distance from the point (2,-1) to the line 2x-5y+10=0","find-the-distance-from-the-point-2-1-to-the-line-2x-5y-10-0",{"data":298},{"id":299,"category":36,"slug":300,"text_question":301,"photo_question":8,"text_answer":302,"step_text_answer":8,"step_photo_answer":8,"views":303,"likes":304,"expert":305},535857,"determines-for-which-values-of-k-the-parabola-of-equation-y-x-2-2-k-3-x-k-15-has-at-least-one-point-in-common-with-the-x-axis-and-intersects-the-y-axis-at-a-point-of-positive-ordinate","determines for which values of k the parabola of equation y= x^2-2(k-3)x-k+15 has at least one point in common with the x axis and intersects the y axis at a point of positive ordinate","Per determinare i valori di k per cui la parabola interseca l'asse delle x e l'asse y nei punti descritti, dobbiamo considerare le condizioni:\u003Cbr>\u003Cbr>1. La parabola interseca l'asse delle x se il discriminante della funzione quadratica Γ¨ maggiore di zero.\u003Cbr>2. La parabola interseca l'asse y in un punto di ordinata positiva se k Γ¨ tale che il termine noto della parabola Γ¨ positivo.\u003Cbr>\u003Cbr>La parabola Γ¨ definita dall'equazione \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = x^2 - 2(k-3)x - k + 15\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>1. Per determinare quando la parabola interseca l'asse delle x, calcoliamo il discriminante:\u003Cbr>\u003Cbr>Il discriminante della funzione quadratica Γ¨ dato da \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\Delta = b^2 - 4ac\u003C/math-field>\u003C/math-field> , dove nella forma generale \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = ax^2 + bx + c\u003C/math-field>\u003C/math-field> abbiamo \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 1\u003C/math-field>\u003C/math-field> , \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>b = -2(k-3)\u003C/math-field>\u003C/math-field> e \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>c = -k + 15\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>Quindi, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\Delta = (-2(k-3))^2 - 4(1)(-k+15) = 4(k^2 - 6k + 9) + 4k - 60 = 4k^2 - 24k + 36 + 4k - 60 = 4k^2 - 20k - 24\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>La parabola interseca l'asse delle x se \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\Delta > 0\u003C/math-field>\u003C/math-field> :\u003Cbr>\u003Cbr> \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4k^2 - 20k - 24 > 0\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. Per determinare quando la parabola interseca l'asse y in un punto di ordinata positiva, dobbiamo assicurarci che il termine noto \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-k + 15\u003C/math-field>\u003C/math-field> sia positivo:\u003Cbr>\u003Cbr> \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-k + 15 > 0\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>Ora risolviamo sia l'inequazione del discriminante che l'inequazione relativa al termine noto per trovare i valori di k che soddisfano entrambe le condizioni.\u003Cbr>\u003Cbr>1. Per \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\Delta = 4k^2 - 20k - 24 > 0\u003C/math-field>\u003C/math-field> :\u003Cbr> \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4k^2 - 20k - 24 > 0 \\implies k^2 - 5k - 6 > 0 \\implies (k - 6)(k + 1) > 0.\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Le soluzioni sono \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>k oppure \u003C/math-field>\u003C/math-field>k > 6\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> .\u003Cbr>\u003Cbr>2. Per \u003C/math-field>\u003C/math-field>-k + 15 > 0\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> :\u003Cbr> \u003C/math-field>\u003C/math-field>-k + 15 > 0 \\implies k \u003Cbr>\u003Cbr>Quindi, i valori di k che soddisfano entrambe le condizioni sono \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>k \\in (-\\infty, -1) \\cup (6, 15)\u003C/math-field>\u003C/math-field> . \u003Cbr>\u003Cbr> \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\boxed{k \\in (-\\infty, -1) \\cup (6, 15)}\u003C/math-field>\u003C/math-field> .",1402,280,{"id":306,"name":307,"photo":308,"biography":309,"created_at":8,"updated_at":8,"rating":310,"total_answer":311},28,"Esmeralda","https://api.math-master.org/img/experts/28/28.webp","From an early age, I've been captivated by the enchanting world of mathematics. It all began during my childhood when the mere sight of numbers and equations ignited a spark within me. This fascination evolved into a lifelong passion, shaping my journey into becoming a dedicated math enthusiast.\r\n\r\nThroughout my formative years in both primary and secondary school, I eagerly participated in various math contests, emerging victorious and accumulating a treasure trove of accolades that celebrated my mathematical prowess. As I embarked on my college journey, I chose a bachelor's degree program that seamlessly intertwined mathematics with computational problem-solving.\r\n\r\nStepping into the realm of teaching was a natural progression for me. Armed with a deep reservoir of mathematical knowledge and an innate ability to explain complex concepts in simple terms, I found myself guiding college entrance exam reviewees through the intricacies of algebra, geometry, trigonometry, and pre-calculus. In the interstices of my journey, I also dabbled in the realm of freelance mathematics. With the luxury of time, I engaged in tackling a diverse array of mathematical problems and coursework. This not only honed my skills further but also cemented my belief that mathematics, while a field of study, is also a boundless realm of exploration and creativity.",4.7,98,{"data":313},{"questions":314},[315,319,323,327,331,334,338,342,346,350,354,358,362,366,370,374,378,382,386,390],{"id":316,"category":36,"text_question":317,"slug":318},532306,"what is 3% of 105?","what-is-3-of-105",{"id":320,"category":36,"text_question":321,"slug":322},533892,"I) Find the directional derivative of π‘“(π‘₯, π‘¦) = π‘₯ sin π‘¦ at (1,0) in the direction of the unit vector that make an angle of πœ‹/4 with positive π‘₯-axis.","i-find-the-directional-derivative-of-f-x-y-x-sin-y-at-1-0-in-the-direction-of-the-unit-vector-that-make-an-angle-of-4-with-positive-x-axis",{"id":324,"category":36,"text_question":325,"slug":326},533965,"In a store there are packets of chocolate, strawberry, tutti-frutti, lemon, grape and banana sweets. If a person needs to choose 4 flavors of candy from those available, how many ways can they make that choice?","in-a-store-there-are-packets-of-chocolate-strawberry-tutti-frutti-lemon-grape-and-banana-sweets-if-a-person-needs-to-choose-4-flavors-of-candy-from-those-available-how-many-ways-can-they-make-th",{"id":328,"category":36,"text_question":329,"slug":330},533971,"The sum of two numbers is 6, and the sum of their squares is 28. Find these numbers exactly","the-sum-of-two-numbers-is-6-and-the-sum-of-their-squares-is-28-find-these-numbers-exactly",{"id":332,"category":36,"text_question":333,"slug":333},533975,"4x567",{"id":335,"category":36,"text_question":336,"slug":337},534012,"Margin of error E=0.30 populations standard deviation =2.5. Population means with 95% confidence.  What I the required sample size (round up to the whole number)","margin-of-error-e-0-30-populations-standard-deviation-2-5-population-means-with-95-confidence-what-i-the-required-sample-size-round-up-to-the-whole-number",{"id":339,"category":36,"text_question":340,"slug":341},534077,"Desarrolla (2x)(3y + 2x)5","desarrolla-2x-3y-2x-5",{"id":343,"category":36,"text_question":344,"slug":345},534240,"A storage maker price is2.50 per square feet. Find the price of a custom shed 4 yards long, and 5yards wide and 8 feet tall","a-storage-maker-price-is-2-50-per-square-feet-find-the-price-of-a-custom-shed-4-yards-long-and-5yards-wide-and-8-feet-tall",{"id":347,"category":36,"text_question":348,"slug":349},534262,"7=-4/3y -1","7-4-3y-1",{"id":351,"category":36,"text_question":352,"slug":353},534276,"Use the power rule for logarithms to solve the following word problem exactly. If you invest 1,000at52,000?","use-the-power-rule-for-logarithms-to-solve-the-following-word-problem-exactly-if-you-invest-1-000-at-5-interest-compounded-annually-how-many-years-will-it-take-before-you-have-2-000",{"id":355,"category":36,"text_question":356,"slug":357},534311,"The two sides of the triangle are 12 cm and 5 cm, and the angle between the sides is 60Β°. Cover the area of ​​the triangle!","the-two-sides-of-the-triangle-are-12-cm-and-5-cm-and-the-angle-between-the-sides-is-60-cover-the-area-of-the-triangle",{"id":359,"category":36,"text_question":360,"slug":361},534312,"The sick-leave time of employees in a firm in a month is normally with a mean of 100 hours and a standard deviation of 20 hours. Find the probability that the sick-leave time of an employee in a month exceeds 130 hours.","the-sick-leave-time-of-employees-in-a-firm-in-a-month-is-normally-with-a-mean-of-100-hours-and-a-standard-deviation-of-20-hours-find-the-probability-that-the-sick-leave-time-of-an-employee-in-a-month",{"id":363,"category":36,"text_question":364,"slug":365},534368,"In measuring the internal radius of a circular sewer the measurement is 2% too large. If this measurement is then used to calculate the circular cross-sectional area of the pipe:\nDetermine, by using the binomial theory, the percentage error that will occur compared to the true area.","in-measuring-the-internal-radius-of-a-circular-sewer-the-measurement-is-2-too-large-if-this-measurement-is-then-used-to-calculate-the-circular-cross-sectional-area-of-the-pipe-determine-by-using-t",{"id":367,"category":36,"text_question":368,"slug":369},534400,"Write the equation of the line that is parallel to y= 4x-7 and has a y- intercept at 0,5","write-the-equation-of-the-line-that-is-parallel-to-y-4x-7-and-has-a-y-intercept-at-0-5",{"id":371,"category":36,"text_question":372,"slug":373},534488,"7- A printing company found in its investigations that there were an average of 6 errors in 150-page prints. Based on this information, what is the probability of there being 48 errors in a 1200-page job?","7-a-printing-company-found-in-its-investigations-that-there-were-an-average-of-6-errors-in-150-page-prints-based-on-this-information-what-is-the-probability-of-there-being-48-errors-in-a-1200-page",{"id":375,"category":36,"text_question":376,"slug":377},534543,"1. The cost to transport 250 packages of cement 120 kilometers is 600. What will be the cost to transport 500 packages 300 kilometers?","1-the-cost-to-transport-250-packages-of-cement-120-kilometers-is-600-what-will-be-the-cost-to-transport-500-packages-300-kilometers",{"id":379,"category":36,"text_question":380,"slug":381},534611,"Convert (324)𝑓𝑖𝑣𝑒 into base-ten","convert-324-five-into-base-ten",{"id":383,"category":36,"text_question":384,"slug":385},534620,"The perimeter of a rectangular rug is 42 feet. The width is 9 feet. What is the length?","the-perimeter-of-a-rectangular-rug-is-42-feet-the-width-is-9-feet-what-is-the-length",{"id":387,"category":36,"text_question":388,"slug":389},534671,"Paul invites 12 friends to his birthday. He wants to give 15 candies to everyone\n two. The candies are sold in packs of 25. How many should he buy?\n packages?","paul-invites-12-friends-to-his-birthday-he-wants-to-give-15-candies-to-everyone-two-the-candies-are-sold-in-packs-of-25-how-many-should-he-buy-packages",{"id":391,"category":36,"text_question":392,"slug":393},534683,"(3.1x10^3g^2)/(4.56x10^2g)","3-1x10-3g-2-4-56x10-2g",{"data":395},[396,400,404],{"id":397,"question":398,"answer":399},145932,"Question: What is the limit of (x^2 + 3x - 2) / (2x - 1) as x approaches 3?","Answer: By plugging in x = 3 into the expression, we obtain (3^2 + 3(3) - 2) / (2(3) - 1) = 16/5. So, the limit is 16/5.",{"id":401,"question":402,"answer":403},138197,"What is the measure of an angle in degrees if it is given in radians as Ο€/3?","The angle measures 60 degrees. Converting Ο€/3 radians to degrees gives us (180/Ο€) * (Ο€/3) = 60Β°.",{"id":405,"question":406,"answer":407},110433,"Question: Convert the number 0.0000451 to scientific notation.","Answer: To convert 0.0000451 to scientific notation, we move the decimal point 4 places to the right and express it as 4.51 x 10^(-5). In scientific notation, the number is written as the product of a decimal number between 1 and 10 and a power of 10 with a positive or negative exponent, depending on the direction of the decimal point movement.",{"sicons":409},{"bxl:facebook-circle":410,"bxl:instagram":414,"mdi:web":416,"la:apple":418,"ph:google-logo-bold":421,"ph:google-logo":424},{"left":411,"top":411,"width":412,"height":412,"rotate":411,"vFlip":183,"hFlip":183,"body":413},0,24,"\u003Cpath fill=\"currentColor\" d=\"M12.001 2.002c-5.522 0-9.999 4.477-9.999 9.999c0 4.99 3.656 9.126 8.437 9.879v-6.988h-2.54v-2.891h2.54V9.798c0-2.508 1.493-3.891 3.776-3.891c1.094 0 2.24.195 2.24.195v2.459h-1.264c-1.24 0-1.628.772-1.628 1.563v1.875h2.771l-.443 2.891h-2.328v6.988C18.344 21.129 22 16.992 22 12.001c0-5.522-4.477-9.999-9.999-9.999\"/>",{"left":411,"top":411,"width":412,"height":412,"rotate":411,"vFlip":183,"hFlip":183,"body":415},"\u003Cpath fill=\"currentColor\" d=\"M11.999 7.377a4.623 4.623 0 1 0 0 9.248a4.623 4.623 0 0 0 0-9.248m0 7.627a3.004 3.004 0 1 1 0-6.008a3.004 3.004 0 0 1 0 6.008\"/>\u003Ccircle cx=\"16.806\" cy=\"7.207\" r=\"1.078\" fill=\"currentColor\"/>\u003Cpath fill=\"currentColor\" d=\"M20.533 6.111A4.6 4.6 0 0 0 17.9 3.479a6.6 6.6 0 0 0-2.186-.42c-.963-.042-1.268-.054-3.71-.054s-2.755 0-3.71.054a6.6 6.6 0 0 0-2.184.42a4.6 4.6 0 0 0-2.633 2.632a6.6 6.6 0 0 0-.419 2.186c-.043.962-.056 1.267-.056 3.71s0 2.753.056 3.71c.015.748.156 1.486.419 2.187a4.6 4.6 0 0 0 2.634 2.632a6.6 6.6 0 0 0 2.185.45c.963.042 1.268.055 3.71.055s2.755 0 3.71-.055a6.6 6.6 0 0 0 2.186-.419a4.6 4.6 0 0 0 2.633-2.633c.263-.7.404-1.438.419-2.186c.043-.962.056-1.267.056-3.71s0-2.753-.056-3.71a6.6 6.6 0 0 0-.421-2.217m-1.218 9.532a5 5 0 0 1-.311 1.688a3 3 0 0 1-1.712 1.711a5 5 0 0 1-1.67.311c-.95.044-1.218.055-3.654.055c-2.438 0-2.687 0-3.655-.055a5 5 0 0 1-1.669-.311a3 3 0 0 1-1.719-1.711a5.1 5.1 0 0 1-.311-1.669c-.043-.95-.053-1.218-.053-3.654s0-2.686.053-3.655a5 5 0 0 1 .311-1.687c.305-.789.93-1.41 1.719-1.712a5 5 0 0 1 1.669-.311c.951-.043 1.218-.055 3.655-.055s2.687 0 3.654.055a5 5 0 0 1 1.67.311a3 3 0 0 1 1.712 1.712a5.1 5.1 0 0 1 .311 1.669c.043.951.054 1.218.054 3.655s0 2.698-.043 3.654z\"/>",{"left":411,"top":411,"width":412,"height":412,"rotate":411,"vFlip":183,"hFlip":183,"body":417},"\u003Cpath fill=\"currentColor\" d=\"M16.36 14c.08-.66.14-1.32.14-2s-.06-1.34-.14-2h3.38c.16.64.26 1.31.26 2s-.1 1.36-.26 2m-5.15 5.56c.6-1.11 1.06-2.31 1.38-3.56h2.95a8.03 8.03 0 0 1-4.33 3.56M14.34 14H9.66c-.1-.66-.16-1.32-.16-2s.06-1.35.16-2h4.68c.09.65.16 1.32.16 2s-.07 1.34-.16 2M12 19.96c-.83-1.2-1.5-2.53-1.91-3.96h3.82c-.41 1.43-1.08 2.76-1.91 3.96M8 8H5.08A7.92 7.92 0 0 1 9.4 4.44C8.8 5.55 8.35 6.75 8 8m-2.92 8H8c.35 1.25.8 2.45 1.4 3.56A8 8 0 0 1 5.08 16m-.82-2C4.1 13.36 4 12.69 4 12s.1-1.36.26-2h3.38c-.08.66-.14 1.32-.14 2s.06 1.34.14 2M12 4.03c.83 1.2 1.5 2.54 1.91 3.97h-3.82c.41-1.43 1.08-2.77 1.91-3.97M18.92 8h-2.95a15.7 15.7 0 0 0-1.38-3.56c1.84.63 3.37 1.9 4.33 3.56M12 2C6.47 2 2 6.5 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2\"/>",{"left":411,"top":411,"width":419,"height":419,"rotate":411,"vFlip":183,"hFlip":183,"body":420},32,"\u003Cpath fill=\"currentColor\" d=\"M20.844 2c-1.64 0-3.297.852-4.407 2.156v.032c-.789.98-1.644 2.527-1.375 4.312c-.128-.05-.136-.035-.28-.094c-.692-.281-1.548-.594-2.563-.594c-3.98 0-7 3.606-7 8.344c0 3.067 1.031 5.942 2.406 8.094c.688 1.078 1.469 1.965 2.281 2.625S11.57 28 12.531 28s1.68-.324 2.219-.563c.54-.238.957-.437 1.75-.437c.715 0 1.078.195 1.625.438c.547.242 1.293.562 2.281.562c1.07 0 1.98-.523 2.719-1.188s1.36-1.519 1.875-2.343c.516-.824.922-1.633 1.219-2.282c.148-.324.258-.593.343-.812s.13-.281.188-.531l.188-.813l-.75-.343a5.3 5.3 0 0 1-1.5-1.063c-.625-.637-1.157-1.508-1.157-2.844A4.08 4.08 0 0 1 24.563 13c.265-.309.542-.563.75-.719c.105-.078.187-.117.25-.156c.062-.04.05-.027.156-.094l.843-.531l-.562-.844c-1.633-2.511-4.246-2.844-5.281-2.844c-.48 0-.82.168-1.25.25c.242-.226.554-.367.75-.624c.004-.004-.004-.028 0-.032q.018-.016.031-.031h.031a6.16 6.16 0 0 0 1.563-4.438L21.78 2zm-1.188 2.313c-.172.66-.453 1.289-.906 1.78l-.063.063c-.382.516-.972.899-1.562 1.125c.164-.652.45-1.312.844-1.812c.008-.012.023-.02.031-.032c.438-.5 1.043-.875 1.656-1.125zm-7.437 5.5c.558 0 1.172.21 1.812.468s1.239.594 2.094.594c.852 0 1.496-.336 2.25-.594s1.559-.469 2.344-.469c.523 0 1.816.333 2.906 1.344c-.191.172-.36.297-.563.531a6.2 6.2 0 0 0-1.53 4.094c0 1.906.831 3.34 1.718 4.25c.55.563.89.696 1.313.938c-.055.125-.086.222-.157.375a19 19 0 0 1-1.093 2.062c-.454.727-1.004 1.434-1.532 1.907c-.527.472-1 .687-1.375.687c-.566 0-.898-.156-1.468-.406S17.581 25 16.5 25c-1.137 0-1.977.336-2.563.594c-.585.258-.89.406-1.406.406c-.246 0-.777-.2-1.375-.688c-.597-.488-1.254-1.23-1.844-2.156c-1.183-1.851-2.093-4.394-2.093-7c0-3.941 2.199-6.343 5-6.343\"/>",{"left":411,"top":411,"width":422,"height":422,"rotate":411,"vFlip":183,"hFlip":183,"body":423},256,"\u003Cpath fill=\"currentColor\" d=\"M228 128a100 100 0 1 1-22.86-63.64a12 12 0 0 1-18.51 15.28A76 76 0 1 0 203.05 140H128a12 12 0 0 1 0-24h88a12 12 0 0 1 12 12\"/>",{"left":411,"top":411,"width":422,"height":422,"rotate":411,"vFlip":183,"hFlip":183,"body":425},"\u003Cpath fill=\"currentColor\" d=\"M224 128a96 96 0 1 1-21.95-61.09a8 8 0 1 1-12.33 10.18A80 80 0 1 0 207.6 136H128a8 8 0 0 1 0-16h88a8 8 0 0 1 8 8\"/>",{"t96FybqVTi":8,"oVhJaef6Ht":8,"5lK7LS5al0":8,"5oSQ2a90xd":8,"q9HwkXB80F":8,"2QISyIzlyM":8,"HGsO2Ckakl":8},"/general/determines-for-which-values-of-k-the-parabola-of-equation-y-x-2-2-k-3-x-k-15-has-at-least-one-point-in-common-with-the-x-axis-and-intersects-the-y-axis-at-a-point-of-positive-ordinate"] AppleWebKit/537.36 KHTML,likeGecko Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://gcdn.fx2.io/math-master.org/"}}