Question

determines for which values of k the parabola of equation y= x^2-2(k-3)x-k+15 has at least one point in common with the x axis and intersects the y axis at a point of positive ordinate

280

likes
1402 views

Answer to a math question determines for which values of k the parabola of equation y= x^2-2(k-3)x-k+15 has at least one point in common with the x axis and intersects the y axis at a point of positive ordinate

Expert avatar
Esmeralda
4.7
98 Answers
Per determinare i valori di k per cui la parabola interseca l'asse delle x e l'asse y nei punti descritti, dobbiamo considerare le condizioni:

1. La parabola interseca l'asse delle x se il discriminante della funzione quadratica è maggiore di zero.
2. La parabola interseca l'asse y in un punto di ordinata positiva se k è tale che il termine noto della parabola è positivo.

La parabola è definita dall'equazione y = x^2 - 2(k-3)x - k + 15 .

1. Per determinare quando la parabola interseca l'asse delle x, calcoliamo il discriminante:

Il discriminante della funzione quadratica è dato da \Delta = b^2 - 4ac , dove nella forma generale y = ax^2 + bx + c abbiamo a = 1 , b = -2(k-3) e c = -k + 15 .

Quindi, \Delta = (-2(k-3))^2 - 4(1)(-k+15) = 4(k^2 - 6k + 9) + 4k - 60 = 4k^2 - 24k + 36 + 4k - 60 = 4k^2 - 20k - 24 .

La parabola interseca l'asse delle x se \Delta > 0 :

4k^2 - 20k - 24 > 0 .

2. Per determinare quando la parabola interseca l'asse y in un punto di ordinata positiva, dobbiamo assicurarci che il termine noto -k + 15 sia positivo:

-k + 15 > 0 .

Ora risolviamo sia l'inequazione del discriminante che l'inequazione relativa al termine noto per trovare i valori di k che soddisfano entrambe le condizioni.

1. Per \Delta = 4k^2 - 20k - 24 > 0 :
4k^2 - 20k - 24 > 0 \implies k^2 - 5k - 6 > 0 \implies (k - 6)(k + 1) > 0.

Le soluzioni sono k oppure k > 6 .

2. Per
-k + 15 > 0 :
-k + 15 > 0 \implies k

Quindi, i valori di k che soddisfano entrambe le condizioni sono k \in (-\infty, -1) \cup (6, 15) .

\boxed{k \in (-\infty, -1) \cup (6, 15)} .

Frequently asked questions (FAQs)
What is the volume of a rectangular solid if the length is 5 units, width is 3 units, and height is 4 units?
+
Question: What is 3/4 expressed as a decimal, multiplied by 100, then subtracted by 25?
+
What is the area of a parallelogram with base 10 cm and height 8 cm?
+
New questions in Mathematics
5 . {2/5 + [ (8/-9) - (1/-7) + (-2/5) ] ÷ (2/-5)} . 8/15
431414-1*(11111-1)-4*(5*3)
8x-(5-x)
the value of sin 178°58'
What will be the density of a fluid whose volume is 130 cubic meters contains 16 technical units of mass? If required Consider g=10 m/s2
(5u + 6)-(3u+2)=
A job takes 9 workers 92 hours to finish. How many hours would it take 5 workers to complete the same job?
is the x element (180,270), if tanx-3cotx=2, sinx ?
A person decides to invest money in fixed income securities to redeem it at the end of 3 years. In this way, you make monthly deposits of R$300.00 in the 1st year, R$400.00 in the 2nd year and R$500.00 in the 3rd year. Calculate the amount, knowing that compound interest is 0.6% per month for the entire period. The answer is 15,828.60
The simple average of 15 , 30 , 40 , and 45 is
Use a pattern approach to explain why (-2)(-3)=6
Determine a general formula​ (or formulas) for the solution to the following equation.​ Then, determine the specific solutions​ (if any) on the interval [0,2π). cos30=0
Let f and g be defined in R and suppose that there exists M > 0 such that |f(x) − f(p)| ≤ M|g(x) − g(p)|, for all x. Prove that if g is continuous in p, then f will also be continuous in p.
Calculate the change in internal energy of a gas that receives 16000 J of heat at constant pressure (1.3 atm) expanding from 0.100 m3 to 0.200 m3. Question 1Answer to. 7050J b. 2125J c. None of the above d. 2828J and. 10295 J
Calculate the area of the parallelogram with adjacent vertices (1,4, −2), (−3,1,6) 𝑦 (1, −2,3)
In an economy with C= 10+0.8 Yd ; I= 20+0.1Y ; G= 100 ; X= 20 ; M=10+0.2Y ; T=-10+0.2Y and R= 10, when knew that Yd= Y-T+R. How much is the budget? A. -23.18 B. -28.13 C. -13.28 D. -32.18
2x-5-x+2=5x-11
Consider the function f(x)=1/2(x+1)^2-3. Use the preceding/following interval method to estimate the instantaneous rate of change at 𝑥 = 1.
g(x)=3(x+8). What is the value of g(12)
6(k-7) -2=5