Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
value for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field>. \u003Cbr />\n\u003Cbr />\n2. Using the standard normal distribution table or a calculator, we find that the CDF value for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field> is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>0.0222\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n3. Since this value represents the area to the left of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field>, the area to the right is:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1 - 0.0222 = 0.9778\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore, the area under the standard normal distribution curve to the right of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>0.9778\u003C/math-field>\u003C/math-field>.",878,176,"find-the-area-under-the-standard-normal-distribution-to-the-right-of-z-2-01",{"id":44,"category":36,"text_question":45,"photo_question":38,"text_answer":46,"step_text_answer":8,"step_photo_answer":8,"views":47,"likes":48,"slug":49},538092,"2²","The expression 22 represents 2 raised to the power of 2, which is 2times2=4. Therefore, the answer is 4.",898,180,"2",{"id":51,"category":36,"text_question":52,"photo_question":38,"text_answer":53,"step_text_answer":8,"step_photo_answer":8,"views":54,"likes":55,"slug":56},538090,"The ratio of Adam’s weight to John’s weight is 6:5. If Adam weighs 48 KG, find John’s weight.","Let Adam's weight be represented as \\( A \\) and John's weight as \\( J \\). \u003Cbr />\n\u003Cbr />\nGiven the ratio is 6:5, we have:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{A}{J} = \\frac{6}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nWe know Adam's weight \\( A = 48 \\, \\text{KG} \\).\u003Cbr />\n\u003Cbr />\nSo substitute \\( A \\) in the ratio:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{48}{J} = \\frac{6}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nBy cross-multiplying:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 6J = 5 \\times 48 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 6J = 240 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nNow, solve for \\( J \\):\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> J = \\frac{240}{6} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> J = 40 \\, \\text{KG} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore, John's weight is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>40 \\text{ KG}\u003C/math-field>\u003C/math-field>.",591,118,"the-ratio-of-adam-s-weight-to-john-s-weight-is-6-5-if-adam-weighs-48-kg-find-john-s-weight",{"id":58,"category":36,"text_question":59,"photo_question":38,"text_answer":60,"step_text_answer":8,"step_photo_answer":8,"views":61,"likes":62,"slug":63},538089,"David cuts a rope 60 m long into two pieces in the ratio 2:3. What is the length of the shorter piece of rope?","1. Let the lengths of the two pieces of rope be represented as $2x$ and $3x$, since they are in the ratio 2:3.\u003Cbr />\n \u003Cbr />\n2. According to the problem, the sum of the lengths of the two pieces is 60 m, so:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x + 3x = 60 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Combine like terms:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 5x = 60 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Solve for $x$:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{60}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 12 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. The length of the shorter piece of rope is $2x$, so:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 2 \\times 12 \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 24 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Therefore, the length of the shorter piece of rope is:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 24 \\, \\text{m} \u003C/math-field>\u003C/math-field>",1166,233,"david-cuts-a-rope-60-m-long-into-two-pieces-in-the-ratio-2-3-what-is-the-length-of-the-shorter-piece-of-rope",{"id":65,"category":36,"text_question":66,"photo_question":38,"text_answer":67,"step_text_answer":8,"step_photo_answer":8,"views":68,"likes":69,"slug":70},538088,"Breanne made pineapple drinks by mixing pineapple syrup and water in the ratio 2:7. If she used 4 L of pineapple syrup, how much water did she use?","1. The ratio of pineapple syrup to water is 2:7. This means for every 2 parts of syrup, there are 7 parts of water.\u003Cbr />\n2. Breanne used 4 L of pineapple syrup. Set up the proportion:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{2}{7} = \\frac{4}{x} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n where \\( x \\) is the amount of water used.\u003Cbr />\n\u003Cbr />\n3. Cross-multiply to solve for \\( x \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 7 \\cdot 4 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 28 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Solve for \\( x \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{28}{2} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Calculate:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 14 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Therefore, Breanne used 14 L of water. \u003Cbr />\n\u003Cbr />\nAnswer: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>14 \\text{ L}\u003C/math-field>\u003C/math-field>",783,157,"breanne-made-pineapple-drinks-by-mixing-pineapple-syrup-and-water-in-the-ratio-2-7-if-she-used-4-l-of-pineapple-syrup-how-much-water-did-she-use",{"id":72,"category":36,"text_question":73,"photo_question":38,"text_answer":74,"step_text_answer":8,"step_photo_answer":8,"views":75,"likes":76,"slug":77},538087,"y=-2(4)^x+1 +1 describe transformation","Solution:\u003Cbr />\n1. Given function:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = -2(4)^{x+1} + 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Base function:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = 4^x\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Identify transformations step-by-step:\u003Cbr />\n - **Translation horizontally**: The function has \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(x+1)\u003C/math-field>\u003C/math-field> as the exponent instead of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>. This indicates a horizontal shift to the left by 1 unit.\u003Cbr />\n - **Vertical stretch and reflection**: The coefficient before \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4\u003C/math-field>\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - **Vertical stretch**: The factor \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2\u003C/math-field>\u003C/math-field> indicates that the function is stretched vertically by a factor of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - **Reflection**: The negative sign indicates a reflection across the x-axis.\u003Cbr />\n - **Vertical translation**: The \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>+1\u003C/math-field>\u003C/math-field> outside the function indicates a vertical shift upwards by 1 unit.\u003Cbr />\n\u003Cbr />\n4. Describe the complete transformation:\u003Cbr />\n - The function \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = 4^x\u003C/math-field>\u003C/math-field> undergoes the following transformations: a horizontal shift to the left by 1 unit, a vertical stretch by a factor of 2, reflection across the x-axis, and finally a vertical shift upwards by 1 unit.",1255,251,"y-2-4-x-1-1-describe-transformation",{"id":79,"category":36,"text_question":80,"photo_question":38,"text_answer":81,"step_text_answer":8,"step_photo_answer":8,"views":82,"likes":83,"slug":84},538086,"Add the polynomials g(x)=x3-2x2+3x-1+4x2-x+2","Solution: \u003Cbr />\n1. Write down the given polynomials:\u003Cbr />\n- First polynomial: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>g(x) = x^3 - 2x^2 + 3x - 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Second polynomial: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x^2 - x + 2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Align and add the polynomials term by term:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>g(x) = x^3 - 2x^2 + 3x - 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x^2 - x + 2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Add the corresponding like terms:\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^2\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2x^2 + 4x^2 = 2x^2\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x - x = 2x\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For constant terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-1 + 2 = 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. The resulting polynomial after addition is:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3 + 2x^2 + 2x + 1\u003C/math-field>\u003C/math-field>",739,148,"add-the-polynomials-g-x-x3-2x2-3x-1-4x2-x-2",{"id":86,"category":36,"text_question":87,"photo_question":38,"text_answer":88,"step_text_answer":8,"step_photo_answer":8,"views":89,"likes":90,"slug":91},538085,"R=3m. Calculate the volume of the sphere. Round to the nearest tenth if necessary","1. The formula for the volume of a sphere is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi R^3 \u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. Substitute the given radius \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> R = 3 \\, \\text{m} \u003C/math-field>\u003C/math-field> into the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi (3)^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 3^3 = 27 \u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Thus, the volume becomes:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi \\times 27 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify the expression:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4 \\times 27}{3} \\pi = 36 \\pi \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Use the approximation \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\pi \\approx 3.1416 \u003C/math-field>\u003C/math-field> :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 36 \\times 3.1416 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. Calculate the approximate volume:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V\\approx113.0973\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>8. Round to the nearest tenth:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 113.1 \\, \\text{m}^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Therefore, the volume of the sphere is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 113.1 \\, \\text{m}^3 \u003C/math-field>\u003C/math-field> .",1203,241,"r-3m-calculate-the-volume-of-the-sphere-round-to-the-nearest-tenth-if-necessary",{"id":93,"category":36,"text_question":94,"photo_question":38,"text_answer":95,"step_text_answer":8,"step_photo_answer":8,"views":96,"likes":97,"slug":98},538084,"Width of 12 in. Calculate the volume of the sphere. Round to the nearest tenth if necessary","1. Identify the radius of the sphere. Given the width is 12 inches, the diameter is 12 inches. Therefore, the radius is half of the diameter:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> r = \\frac{12}{2} = 6 \\, \\text{in} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Use the formula for the volume of a sphere:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi r^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute the radius into the formula:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi (6)^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Calculate:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi \\times 216 = \\frac{864}{3} \\pi = 288 \\pi \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Approximate using \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\pi \\approx 3.1416 \u003C/math-field>\u003C/math-field>:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 288 \\times 3.1416 = 904.8 \\, \\text{in}^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. The volume of the sphere, rounded to the nearest tenth, is approximately:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 904.8 \\, \\text{in}^3 \u003C/math-field>\u003C/math-field>",278,56,"width-of-12-in-calculate-the-volume-of-the-sphere-round-to-the-nearest-tenth-if-necessary",{"id":100,"category":36,"text_question":101,"photo_question":38,"text_answer":102,"step_text_answer":8,"step_photo_answer":8,"views":103,"likes":104,"slug":105},538083,"Calculate the volume (to the nearest tenth of a cubic centimeter) of a golf ball whose diameter is 4.267cm","1. The formula for the volume of a sphere is given by \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi r^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. The diameter of the golf ball is given as 4.267 cm, so the radius is half of that: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>r = \\frac{4.267}{2} = 2.1335 \\, \\text{cm}\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>3. Substitute the radius into the volume formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi (2.1335)^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Calculate the cube of the radius: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(2.1335)^3 = 9.707432537375\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>5. Substitute this back into the formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V=\\frac{4}{3}\\pi\\times9.707432537375\\approx40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>6. The volume of the golf ball is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .",1440,288,"calculate-the-volume-to-the-nearest-tenth-of-a-cubic-centimeter-of-a-golf-ball-whose-diameter-is-4-267cm",{"id":107,"category":36,"text_question":108,"photo_question":38,"text_answer":109,"step_text_answer":8,"step_photo_answer":8,"views":110,"likes":111,"slug":112},538082,"Find the length of each base edge (to the nearest tenth of a meter) of the 24m tall glass square pyramids of the Muttart Conservatory in Alberta, Canada, if each contains 5280m^3 of space","1. Volume V of a square pyramid is given by the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{1}{3} B h\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>where B is the area of the base and h is the height of the pyramid.\u003Cbr>\u003Cbr>2. Given that the height h = 24 m and the volume V = 5280 m^3.\u003Cbr>\u003Cbr>3. The base is square, so if the side length of the base is s, then:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>B = s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Substituting into the volume formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = \\frac{1}{3} s^2 \\times 24\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify and solve for s^2:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = 8 s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s^2 = \\frac{5280}{8} = 660\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Solve for s:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{660} \\approx 25.7\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. To find the length of each base edge to the nearest tenth of a meter, compute:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s \\approx 25.7 \\, \\text{m}\u003C/math-field>\u003C/math-field>",418,84,"find-the-length-of-each-base-edge-to-the-nearest-tenth-of-a-meter-of-the-24m-tall-glass-square-pyramids-of-the-muttart-conservatory-in-alberta-canada-if-each-contains-5280m-3-of-space",{"id":114,"category":36,"text_question":115,"photo_question":38,"text_answer":116,"step_text_answer":8,"step_photo_answer":8,"views":117,"likes":118,"slug":119},538081,"An observer is 150 meters away\n distance of a hot air balloon online\n straight line at ground level. From your position,\n measures an elevation angle of 40° up to\n the base of the balloon. At what height is\n find the hot air balloon?","Solution:\u003Cbr />\n1. Dado:\u003Cbr />\n- Distancia horizontal desde el observador hasta la base del globo: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>d = 150 \\ m\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Ángulo de elevación: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\theta = 40^{\\circ}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Usamos la función tangente para encontrar la altura \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h\u003C/math-field>\u003C/math-field> del globo aerostático. La tangente de un ángulo en un triángulo rectángulo es la razón entre la altura y la distancia horizontal:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(\\theta) = \\frac{h}{d}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Sustituimos los valores conocidos en la ecuación:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(40^{\\circ}) = \\frac{h}{150}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Resolvemos para \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h = 150 \\times \\tan(40^{\\circ})\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Calculamos el valor numérico:\u003Cbr />\n* Usando una calculadora, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(40^{\\circ}) \\approx 0.8391\u003C/math-field>\u003C/math-field>\u003Cbr />\n* Entonces: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h \\approx 150 \\times 0.8391 = 125.865 \\ m\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nLa altura del globo aerostático es aproximadamente \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>125.865 \\ m\u003C/math-field>\u003C/math-field>.",667,133,"an-observer-is-150-meters-away-distance-of-a-hot-air-balloon-online-straight-line-at-ground-level-from-your-position-measures-an-elevation-angle-of-40-up-to-the-base-of-the-balloon-at-what-hei",{"id":121,"category":36,"text_question":122,"photo_question":38,"text_answer":123,"step_text_answer":8,"step_photo_answer":8,"views":124,"likes":125,"slug":126},538080,"A plane ticket has gone up 18%, now costing $4,720. How much did it cost before the increase?","\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\text{Solution:}\u003C/math-field>\u003C/math-field>\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field> be the original price of the plane ticket.\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field> increased by 18% means the new price is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P + 0.18P = 1.18P\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n2. Set up the equation based on the problem statement:\u003Cbr />\n- The new price \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>= 4,720\u003C/math-field>\u003C/math-field>.\u003Cbr />\n- Therefore, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1.18P = 4,720\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n3. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field>:\u003Cbr />\n- Divide both sides by 1.18 to isolate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field>.\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P = \\frac{4,720}{1.18}\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n4. Calculate:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P \\approx 4,000\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\text{Answer:}\u003C/math-field>\u003C/math-field>\u003Cbr />\n- The original price of the plane ticket was approximately USD 4,000.",726,145,"a-plane-ticket-has-gone-up-18-now-costing-4-720-how-much-did-it-cost-before-the-increase",{"id":128,"category":36,"text_question":129,"photo_question":38,"text_answer":130,"step_text_answer":8,"step_photo_answer":8,"views":131,"likes":132,"slug":133},538078,"H=8mm, r=2mm. Calculate the volume of the cone round to the nearest tenth if necessary","1. Use the formula for the volume of a cone: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi r^2 H \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Substitute the given values: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> H = 8 \\, \\text{mm}, \\, r = 2 \\, \\text{mm} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (2)^2 (8) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate \\( (2)^2 \\):\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> (2)^2 = 4 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Substitute and compute:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (4)(8) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (32) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Calculate the product: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{32}{3} \\pi \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Calculate:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V\\approx33.51032\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. Round to the nearest tenth:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 33.5 \\, \\text{mm}^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>This is the answer: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 33.5 \\, \\text{mm}^3 \u003C/math-field>\u003C/math-field>",631,126,"h-8mm-r-2mm-calculate-the-volume-of-the-cone-round-to-the-nearest-tenth-if-necessary",{"id":135,"category":36,"text_question":136,"photo_question":38,"text_answer":137,"step_text_answer":8,"step_photo_answer":8,"views":138,"likes":139,"slug":140},538076,"Dividing 218 or 172 by the natural number n, you get a remainder of 11. Dividing n by 11, you get a remainder equal to:","** \u003Cbr>\u003Cbr>1. Since dividing 218 by n gives a remainder of 11, 218 - 11 = 207 is divisible by n : \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>207\\equiv0\\pmod{n}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Similarly, dividing 172 by n gives a remainder of 11, so 172 - 11 = 161 is divisible by n :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>161\\equiv0\\pmod{n}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. n must be a common divisor of 207 and 161. Find the greatest common divisor of 207 and 161:\u003Cbr>\u003Cbr>- First, find the difference: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 207 - 161 = 46 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Find the prime factorization of 46:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 46 = 2 \\times 23 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Prime factorization of 161:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 161 = 7 \\times 23 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Common factor is 23.\u003Cbr>\u003Cbr>4. Therefore, the possible value of n should be 23 (since other divisions have factors that don't divide both). Now, divide n = 23 by 11:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 23 \\div 11 = 2 \\, \\text{R} \\, 1 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Thus, the remainder of dividing n by 11 is 1\u003Cbr>\u003Cbr>",1233,247,"dividing-218-or-172-by-the-natural-number-n-you-get-a-remainder-of-11-dividing-n-by-11-you-get-a-remainder-equal-to",{"id":142,"category":36,"text_question":143,"photo_question":38,"text_answer":144,"step_text_answer":8,"step_photo_answer":8,"views":145,"likes":146,"slug":147},538074,"R=24 inches\nCalculate the surface area of the sphere","1. The formula to calculate the surface area of a sphere is given by: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = 4 \\pi R^2 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Substitute the value of the radius \\( R = 24 \\) inches into the formula: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = 4 \\pi (24)^2 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate the square of the radius:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> (24)^2 = 576 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Multiply by 4:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 4 \\times 576 = 2304 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. The surface area is:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>A=2304\\pi=7238.23\u003C/math-field>\u003C/math-field> square inches \u003Cbr>\u003Cbr>Therefore, the surface area of the sphere is 7238.23 square inches.",923,185,"r-24-inches-calculate-the-surface-area-of-the-sphere",{"id":149,"category":36,"text_question":150,"photo_question":38,"text_answer":151,"step_text_answer":8,"step_photo_answer":8,"views":152,"likes":153,"slug":154},538073,"Andrés's age is three times Quan's.\n plus wins and both ages add up to 69 years. Nillar\n both ages.","Solution:\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field> be the age of Andrés.\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field> be the age of Quan.\u003Cbr />\n\u003Cbr />\n2. Set up the equations based on the problem:\u003Cbr />\n- Andrés is three times as old as Quan: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field>\u003Cbr />\n- The sum of their ages is 69: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a + q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field> into the second equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3q + q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify the equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q = \\frac{69}{4}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Compute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q = 17.25\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Find \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field> using the equation \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3 \\times 17.25\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n8. Compute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 51.75\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore:\u003Cbr />\n- Quan is approximately 17.25 years old.\u003Cbr />\n- Andrés is approximately 51.75 years old.",553,111,"andres-s-age-is-three-times-quan-s-plus-wins-and-both-ages-add-up-to-69-years-nillar-both-ages",{"id":156,"category":36,"text_question":157,"photo_question":38,"text_answer":158,"step_text_answer":8,"step_photo_answer":8,"views":159,"likes":160,"slug":161},538072,"Andrew's age is three times John's plus nine years, and their ages add up to 69 years. Find both ages.","Solution:\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> be Juan's age.\u003Cbr />\n- Andrés' age is then \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n2. Set up the equation for the total age:\u003Cbr />\n- Juan's age \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> plus Andrés' age \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9\u003C/math-field>\u003C/math-field> equals 69.\u003Cbr />\n\u003Cbr />\n3. Equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + (3x + 9) = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify and solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + 3x + 9 = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x + 9 = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x = 60\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 15\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Find Andrés' age:\u003Cbr />\n- Substitute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 15\u003C/math-field>\u003C/math-field> into Andrés' age expression:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9 = 3(15) + 9 = 45 + 9 = 54\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Therefore, the ages are:\u003Cbr />\n- Juan: 15 years\u003Cbr />\n- Andrés: 54 years",531,106,"andrew-s-age-is-three-times-john-s-plus-nine-years-and-their-ages-add-up-to-69-years-find-both-ages",{"id":163,"category":36,"text_question":164,"photo_question":38,"text_answer":165,"step_text_answer":8,"step_photo_answer":8,"views":166,"likes":167,"slug":168},538071,"Solve the following linear equations:\n 1) 5x-3= 3X+7","Solution:\u003Cbr />\n1. Given Equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5x - 3 = 3x + 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Subtract \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x\u003C/math-field>\u003C/math-field> from both sides to simplify:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5x - 3x - 3 = 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Combine like terms:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x - 3 = 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Add 3 to both sides to isolate the term with the variable:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x = 10\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Divide both sides by 2 to solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 5\u003C/math-field>\u003C/math-field>",1382,276,"solve-the-following-linear-equations-1-5x-3-3x-7",{"id":170,"category":36,"text_question":171,"photo_question":38,"text_answer":172,"step_text_answer":8,"step_photo_answer":8,"views":173,"likes":174,"slug":175},538070,"Solve the following linear equations:\n\n 2) 2x+4- 5x = x+8-5×","1. Start with the original equation: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x + 4 - 5x = x + 8 - 5x\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Combine like terms on both sides:\u003Cbr>\u003Cbr>- Left side: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x - 5x + 4 = -3x + 4\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Right side: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x - 5x + 8 = -4x + 8\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>So the equation becomes:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-3x + 4 = -4x + 8\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Add \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x\u003C/math-field>\u003C/math-field> to both sides to get:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + 4 = 8\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Subtract \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4\u003C/math-field>\u003C/math-field> from both sides:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 4\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>",674,135,"solve-the-following-linear-equations-2-2x-4-5x-x-8-5",{"first":6,"last":177,"prev":8,"next":10},188,{"current_page":6,"from":6,"last_page":177,"links":179,"path":212,"per_page":213,"to":213,"total":214},[180,183,185,187,189,191,193,196,199,202,205,208,210],{"url":6,"label":181,"active":182},"1",true,{"url":10,"label":49,"active":184},false,{"url":13,"label":186,"active":184},"3",{"url":16,"label":188,"active":184},"4",{"url":19,"label":190,"active":184},"5",{"url":22,"label":192,"active":184},"6",{"url":194,"label":195,"active":184},7,"7",{"url":197,"label":198,"active":184},8,"8",{"url":200,"label":201,"active":184},9,"9",{"url":203,"label":204,"active":184},10,"10",{"url":206,"label":207,"active":184},187,"187",{"url":177,"label":209,"active":184},"188",{"url":10,"label":211,"active":184},"Next »","https://api.math-master.org/api/question",20,3742,{"data":216},{"questions":217},[218,222,226,230,234,238,242,246,250,254,258,262,266,270,274,278,282,286,290,294],{"id":219,"category":36,"text_question":220,"slug":221},531999,"How to find the value of x and y which satisfy both equations x-2y=24 and 8x-y=117","how-to-find-the-value-of-x-and-y-which-satisfy-both-equations-x-2y-24-and-8x-y-117",{"id":223,"category":36,"text_question":224,"slug":225},532011,"Convert the following function from standard form to vertex form \nf(x) = x^2 + 7x - 1","convert-the-following-function-from-standard-form-to-vertex-form-f-x-x-2-7x-1",{"id":227,"category":36,"text_question":228,"slug":229},532063,"The sum of an infinite geometric series is 13,5 \r\n The sum of the same series, calculated from the third term is 1,5.\r\n Q. Calculate r if r>0.","the-sum-of-an-infinite-geometric-series-is-13-5-the-sum-of-the-same-series-calculated-from-the-third-term-is-1-5-q-calculate-r-if-r-0",{"id":231,"category":36,"text_question":232,"slug":233},532297,"A book is between 400 and 450 pages. If we count them 2 at a time there is none left over, if we count them 5 at a time there is none left over and if we count them 7 at a time there are none left over, how many pages does the book have?","a-book-is-between-400-and-450-pages-if-we-count-them-2-at-a-time-there-is-none-left-over-if-we-count-them-5-at-a-time-there-is-none-left-over-and-if-we-count-them-7-at-a-time-there-are-none-left-ove",{"id":235,"category":36,"text_question":236,"slug":237},532302,"two particles start at the origin and move along the x axis. for 0 \u003C= t \u003C= 10, their respective position functions are given by x1 = cos(t) and x2 = (e^-3t) + 1. for how many values of t do the particles have the same velocity?","two-particles-start-at-the-origin-and-move-along-the-x-axis-for-0-t-10-their-respective-position-functions-are-given-by-x1-cos-t-and-x2-e-3t-1-for-how-many-values-of-t-do-the-partic",{"id":239,"category":36,"text_question":240,"slug":241},533883,"The derivative of a power is obtained just by subtracting 1 from the power True or false","the-derivative-of-a-power-is-obtained-just-by-subtracting-1-from-the-power-true-or-false",{"id":243,"category":36,"text_question":244,"slug":245},533914,"Given that y = ×(2x + 1)*, show that\r\ndy = (2x + 1)\" (Ax + B)\r\ndx\r\nwhere n, A and B are constants to be found.","given-that-y-2x-1-show-that-dy-2x-1-ax-b-dx-where-n-a-and-b-are-constants-to-be-found",{"id":247,"category":36,"text_question":248,"slug":249},533993,"Two events E and F are ________ if the occurrence of event E in a probability experiment does not affect the probability of event F.","two-events-e-and-f-are-if-the-occurrence-of-event-e-in-a-probability-experiment-does-not-affect-the-probability-of-event-f",{"id":251,"category":36,"text_question":252,"slug":253},534017,"(2x+5)^3+(x-3)(x+3)","2x-5-3-x-3-x-3",{"id":255,"category":36,"text_question":256,"slug":257},534029,"A job takes 9\n workers 92\n hours to finish. How many hours would it take 5\n workers to complete the same job?","a-job-takes-9-workers-92-hours-to-finish-how-many-hours-would-it-take-5-workers-to-complete-the-same-job",{"id":259,"category":36,"text_question":260,"slug":261},534035,"4x-3y=24 and 5x-2y=9 solve by elimination","4x-3y-24-and-5x-2y-9-solve-by-elimination",{"id":263,"category":36,"text_question":264,"slug":265},534109,"4x/2+5x-3/6=7/8-1/4-x","4x-2-5x-3-6-7-8-1-4-x",{"id":267,"category":36,"text_question":268,"slug":269},534138,"Let r: x - y 5 = 0. Determine a general equation of the line s parallel to the line r, which forms an isosceles triangle with area 8 with the line x = 5 and the Ox axis.","let-r-x-y-5-0-determine-a-general-equation-of-the-line-s-parallel-to-the-line-r-which-forms-an-isosceles-triangle-with-area-8-with-the-line-x-5-and-the-ox-axis",{"id":271,"category":36,"text_question":272,"slug":273},534164,"Solve : 15/16 divide 12/8 =x/y","solve-15-16-divide-12-8-x-y",{"id":275,"category":36,"text_question":276,"slug":277},534216,"It is known that the content of milk that is actually in a bag distributes normally with\n an average of 900 grams and variance 25 square grams. Suppose that the cost in pesos of a bag of milk is given by\n 𝐶(𝑥) = {\n 3800 𝑠𝑖 𝑥 ≤ 890\n 4500 𝑠𝑖 𝑥 > 890\n Find the expected cost.","it-is-known-that-the-content-of-milk-that-is-actually-in-a-bag-distributes-normally-with-an-average-of-900-grams-and-variance-25-square-grams-suppose-that-the-cost-in-pesos-of-a-bag-of-milk-is-given",{"id":279,"category":36,"text_question":280,"slug":281},534390,"Derivative of 2x","derivative-of-2x",{"id":283,"category":36,"text_question":284,"slug":285},534483,"A property sold for $745,000 in a co-brokered transaction. The seller has agreed to pay a 7% commission to the listing firm. The listing firm has agreed to equally split the commission with the selling firm. If the buyer’s broker will receive 8% of the selling firm’s commission, how much commission will the buyer’s broker receive? \n$14,900\n$3725\n$$37250\n$18625","a-property-sold-for-745-000-in-a-co-brokered-transaction-the-seller-has-agreed-to-pay-a-7-commission-to-the-listing-firm-the-listing-firm-has-agreed-to-equally-split-the-commission-with-the-sellin",{"id":287,"category":36,"text_question":288,"slug":289},534521,"Read the “Local Communities as Stakeholders: Does Amazon Really Need Tax Breaks?” example on p. 83 in Ch. 3 of Management: A Practical Introduction. In your response, discuss whether you feel that tax breaks for big companies benefit local communities. Describe ways to attract business to a region without having a negative impact on the larger community.","read-the-local-communities-as-stakeholders-does-amazon-really-need-tax-breaks-example-on-p-83-in-ch-3-of-management-a-practical-introduction-in-your-response-discuss-whether-you-feel-that-tax",{"id":291,"category":36,"text_question":292,"slug":293},534572,"did an analysis of dropout from the nursing faculty at the Universidad Veracruzana. With a poblation of\n\n 122 students, it turned out that according to the gender data, the female sex predominates with 82%, and the male sex\n\n male is found with 12%. The main factors why students drop out are, first of all, \"Not\n\n \"re-enrolled\" at 49%, second place \"Personal reasons\" at 20%, third place \"change of school\"\n\n in 11%, \"lack of documents\" and \"economic reasons\" in 7%, change of residence and lack of social service in\n\n 3%. Of this sample, how many students dropped out for other reasons?","did-an-analysis-of-dropout-from-the-nursing-faculty-at-the-universidad-veracruzana-with-a-poblation-of-122-students-it-turned-out-that-according-to-the-gender-data-the-female-sex-predominates-wit",{"id":295,"category":36,"text_question":296,"slug":297},534649,"Hola👋🏻\r\n\r\nToca en \"Crear Nueva Tarea\" para enviar tu problema de matemáticas.\r\n\r\n¡Uno de nuestros expertos comenzará a trabajar en ello de inmediato!","hola-toca-en-crear-nueva-tarea-para-enviar-tu-problema-de-matematicas-uno-de-nuestros-expertos-comenzara-a-trabajar-en-ello-de-inmediato",{"data":299},{"id":300,"category":36,"slug":301,"text_question":302,"photo_question":8,"text_answer":303,"step_text_answer":8,"step_photo_answer":8,"views":304,"likes":90,"expert":305},537427,"differentiate-g-t-3t-2t-1","differentiate g(t)=3t/2t+1","1. Identify functions \\( u \\) and \\( v \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> u = 3t \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> v = 2t + 1 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Compute the derivatives:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> u' = 3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> v' = 2 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Apply the quotient rule:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> g'(t) = \\frac{u'v - uv'}{v^2} \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> g'(t) = \\frac{(3)(2t + 1) - (3t)(2)}{(2t + 1)^2} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify the expression:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> g'(t) = \\frac{6t + 3 - 6t}{(2t + 1)^2} \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> g'(t) = \\frac{3}{(2t + 1)^2} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. The derivative of \\( g(t) \\) is:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> g'(t) = \\frac{3}{(2t + 1)^2} \u003C/math-field>\u003C/math-field>",1207,{"id":306,"name":307,"photo":308,"biography":309,"created_at":8,"updated_at":8,"rating":310,"total_answer":311},21,"Jon","https://api.math-master.org/img/experts/21/21.webp","I passed my matric from Govt.City Muslim school Faisalabad and got first division in school by getting 981/1000 marks.\nAfter matric i got admission in Shiblee Colege Faisalabad and got 883/1100 marks in degree of inter with Math.\nNow currently i'm student of BS Math and running my last semester.",4.6,108,{"data":313},{"questions":314},[315,319,323,327,331,335,339,343,347,351,355,359,363,367,371,375,379,383,387,391],{"id":316,"category":36,"text_question":317,"slug":318},533882,"Given the vectors: a = (2m – 3n, 4n – m) and b = (2, -3), find the values of m and n that make: a = 5 b.","given-the-vectors-a-2m-3n-4n-m-and-b-2-3-find-the-values-of-m-and-n-that-make-a-5-b",{"id":320,"category":36,"text_question":321,"slug":322},533913,"Use the elimination to find the solution to each linear system.\n\nX+y=43\n2x-y=20","use-the-elimination-to-find-the-solution-to-each-linear-system-x-y-43-2x-y-20",{"id":324,"category":36,"text_question":325,"slug":326},533965,"In a store there are packets of chocolate, strawberry, tutti-frutti, lemon, grape and banana sweets. If a person needs to choose 4 flavors of candy from those available, how many ways can they make that choice?","in-a-store-there-are-packets-of-chocolate-strawberry-tutti-frutti-lemon-grape-and-banana-sweets-if-a-person-needs-to-choose-4-flavors-of-candy-from-those-available-how-many-ways-can-they-make-th",{"id":328,"category":36,"text_question":329,"slug":330},533995,"Suppose 56% of politicians are lawyers if a random sample of size 564 is selected, what is the probability that the proportion of politicians who are lawyers will differ from the total politicians proportions buy more than 4% round your answer to four decimal places","suppose-56-of-politicians-are-lawyers-if-a-random-sample-of-size-564-is-selected-what-is-the-probability-that-the-proportion-of-politicians-who-are-lawyers-will-differ-from-the-total-politicians-pro",{"id":332,"category":36,"text_question":333,"slug":334},534012,"Margin of error E=0.30 populations standard deviation =2.5. Population means with 95% confidence. What I the required sample size (round up to the whole number)","margin-of-error-e-0-30-populations-standard-deviation-2-5-population-means-with-95-confidence-what-i-the-required-sample-size-round-up-to-the-whole-number",{"id":336,"category":36,"text_question":337,"slug":338},534045,"How many different ways can a psychology student select 5 subjects from a pool of 20 subjects and assign each one to a different experiment?","how-many-different-ways-can-a-psychology-student-select-5-subjects-from-a-pool-of-20-subjects-and-assign-each-one-to-a-different-experiment",{"id":340,"category":36,"text_question":341,"slug":342},534111,"5.- From the probabilities:\n 𝐏(𝐁) = 𝟑𝟎%\n 𝐏(𝐀 ∩ 𝐁) = 𝟐𝟎%\n 𝐏(𝐀\n ̅) = 𝟕𝟎%\n You are asked to calculate: 𝐏(𝐀 ∪ 𝐁)","5-from-the-probabilities-p-b-30-p-a-b-20-p-a-70-you-are-asked-to-calculate-p-a-b",{"id":344,"category":36,"text_question":345,"slug":346},534165,"You mix a powder drug with a 4.5ml of liquid to get a reconstituted solution with a concentration of 250mg/ml. The prescribers order is for 500 mg . You will give what ml of the reconstituted solution","you-mix-a-powder-drug-with-a-4-5ml-of-liquid-to-get-a-reconstituted-solution-with-a-concentration-of-250mg-ml-the-prescribers-order-is-for-500-mg-you-will-give-what-ml-of-the-reconstituted-solutio",{"id":348,"category":36,"text_question":349,"slug":350},534196,". What will be the osmotic pressure of a solution that was prepared at 91°F by dissolving 534 grams of aluminum hydroxide in enough water to generate 2.784 ml of solution.","what-will-be-the-osmotic-pressure-of-a-solution-that-was-prepared-at-91-f-by-dissolving-534-grams-of-aluminum-hydroxide-in-enough-water-to-generate-2-784-ml-of-solution",{"id":352,"category":36,"text_question":353,"slug":354},534223,"In a order to compare the means of two populations, independent random samples of 410 observations are selected from each population, with Sample 1 the results found in the table to the right. Complete parts a through e below. X1 = 5,319 S1= 143 a. Use a 95% confidence interval to estimate the difference between the population means (H - H2) Interpret the contidence interval. The contidence interval IS (Round to one decimal place as needed.) Sample 2 X2 = 5,285 S2 = 198\n\nAa. Use a 95% confidence interval to estimate the difference between the population means (A1 - M2) Interpret the contidence interval. The contidence interval Is (Round to one decimal place as needed.)\n\nb. Test the null hypothesis Ho versus alternative hypothesis Ha (H What is the test statistic? H2) + Give the significance level of the test, and interpret the result. Use a = 0.05. \nZ=","in-a-order-to-compare-the-means-of-two-populations-independent-random-samples-of-410-observations-are-selected-from-each-population-with-sample-1-the-results-found-in-the-table-to-the-right-complet",{"id":356,"category":36,"text_question":357,"slug":358},534234,"With the aim of identifying the presence of the feline leukemia virus (FeLV), blood samples were collected from cats sent to a private veterinary clinic in the city of Belo Horizonte. Among the animals treated, it was possible to observe that age followed a Normal distribution with a mean of 4.44 years and a standard deviation of 1.09 years. Considering this information, determine the value of the third quartile of the ages of the animals treated at this veterinary clinic.\n\n\n\n ATTENTION: Provide the answer to exactly FOUR decimal places","with-the-aim-of-identifying-the-presence-of-the-feline-leukemia-virus-felv-blood-samples-were-collected-from-cats-sent-to-a-private-veterinary-clinic-in-the-city-of-belo-horizonte-among-the-animal",{"id":360,"category":36,"text_question":361,"slug":362},534268,"Engineers want to design seats in commercial aircraft so that they are wide enough to fit 95% of all males. (Accommodating 100% of males would require very wide seats that would be much too expensive.) Men have hip breadths that are normally distributed with a mean of 14.4 in. and a standard deviation of 1.2 in. Find P95. That is, find the hip breadth for men that separates the smallest 95% from the largest 5%.","engineers-want-to-design-seats-in-commercial-aircraft-so-that-they-are-wide-enough-to-fit-95-of-all-males-accommodating-100-of-males-would-require-very-wide-seats-that-would-be-much-too-expensi",{"id":364,"category":36,"text_question":365,"slug":366},534323,"A function is considered exponential when it has a base with positive values greater than zero and different from one, where the exponent is an unknown.\n\n An important characteristic of exponential functions is that they show rapid growth or decay as an independent variable increases or decreases.\n\n Given the function 25^(x+3)=125, it is calculated that x has the value of","a-function-is-considered-exponential-when-it-has-a-base-with-positive-values-greater-than-zero-and-different-from-one-where-the-exponent-is-an-unknown-an-important-characteristic-of-exponential-fu",{"id":368,"category":36,"text_question":369,"slug":370},534330,"9 x² + 2x + 1 = 0","9-x-2x-1-0",{"id":372,"category":36,"text_question":373,"slug":374},534429,"How to factorise 5y^2 -7y -52","how-to-factorise-5y-2-7y-52",{"id":376,"category":36,"text_question":377,"slug":378},534620,"The perimeter of a rectangular rug is 42 feet. The width is 9 feet. What is the length?","the-perimeter-of-a-rectangular-rug-is-42-feet-the-width-is-9-feet-what-is-the-length",{"id":380,"category":36,"text_question":381,"slug":382},534627,"Carmen's age was twice as old as Luis was when Carmen was Luis's age. When Luis is Carmen's age, their ages will add up to 112.","carmen-s-age-was-twice-as-old-as-luis-was-when-carmen-was-luis-s-age-when-luis-is-carmen-s-age-their-ages-will-add-up-to-112",{"id":384,"category":36,"text_question":385,"slug":386},534634,"64-6x^2>0","64-6x-2-0",{"id":388,"category":36,"text_question":389,"slug":390},534675,"23,456 + 3,451","23-456-3-451",{"id":392,"category":36,"text_question":393,"slug":394},534689,"The car with an irresponsible driver starts to brake when it goes through a red light. When passing the traffic light, he does so at a speed of 115 kph in the right lane. Further ahead, 70 meters from the traffic light, a child is crossing the street and falls. If the effect of the car's brakes is equivalent to a deceleration of magnitude 5.7m/s². Is the child hit by the car or not? How far from the traffic light does the car stop?","the-car-with-an-irresponsible-driver-starts-to-brake-when-it-goes-through-a-red-light-when-passing-the-traffic-light-he-does-so-at-a-speed-of-115-kph-in-the-right-lane-further-ahead-70-meters-from",{"data":396},[397,401,405],{"id":398,"question":399,"answer":400},161014,"What is the value of 5 raised to the power of 3, multiplied by the square root of 4?","The answer is (5^3) * √4 = 125 * 2 = 250.",{"id":402,"question":403,"answer":404},110385,"Math Question: Convert the number 2.5 x 10^4 into decimal notation.","Answer: The number 2.5 x 10^4 can be represented in decimal notation as 25,000. When we have a number in scientific notation, the base (2.5) is multiplied by 10 raised to the power of the exponent (4). So, 2.5 x 10^4 = 2.5 * (10 * 10 * 10 * 10) = 25,000.",{"id":406,"question":407,"answer":408},103739,"What is the square root of 81 plus the cube root of 125 minus the square root of 49?","The square root of 81 is 9, the cube root of 125 is 5, and the square root of 49 is 7. Therefore, 9 + 5 - 7 equals 7.",{"$sicons":410},{"bxl:facebook-circle":411,"bxl:instagram":415,"mdi:web":417,"la:apple":419,"ph:google-logo-bold":422,"ph:google-logo":425},{"left":412,"top":412,"width":413,"height":413,"rotate":412,"vFlip":184,"hFlip":184,"body":414},0,24,"\u003Cpath fill=\"currentColor\" d=\"M12.001 2.002c-5.522 0-9.999 4.477-9.999 9.999c0 4.99 3.656 9.126 8.437 9.879v-6.988h-2.54v-2.891h2.54V9.798c0-2.508 1.493-3.891 3.776-3.891c1.094 0 2.24.195 2.24.195v2.459h-1.264c-1.24 0-1.628.772-1.628 1.563v1.875h2.771l-.443 2.891h-2.328v6.988C18.344 21.129 22 16.992 22 12.001c0-5.522-4.477-9.999-9.999-9.999\"/>",{"left":412,"top":412,"width":413,"height":413,"rotate":412,"vFlip":184,"hFlip":184,"body":416},"\u003Cpath fill=\"currentColor\" d=\"M11.999 7.377a4.623 4.623 0 1 0 0 9.248a4.623 4.623 0 0 0 0-9.248m0 7.627a3.004 3.004 0 1 1 0-6.008a3.004 3.004 0 0 1 0 6.008\"/>\u003Ccircle cx=\"16.806\" cy=\"7.207\" r=\"1.078\" fill=\"currentColor\"/>\u003Cpath fill=\"currentColor\" d=\"M20.533 6.111A4.6 4.6 0 0 0 17.9 3.479a6.6 6.6 0 0 0-2.186-.42c-.963-.042-1.268-.054-3.71-.054s-2.755 0-3.71.054a6.6 6.6 0 0 0-2.184.42a4.6 4.6 0 0 0-2.633 2.632a6.6 6.6 0 0 0-.419 2.186c-.043.962-.056 1.267-.056 3.71s0 2.753.056 3.71c.015.748.156 1.486.419 2.187a4.6 4.6 0 0 0 2.634 2.632a6.6 6.6 0 0 0 2.185.45c.963.042 1.268.055 3.71.055s2.755 0 3.71-.055a6.6 6.6 0 0 0 2.186-.419a4.6 4.6 0 0 0 2.633-2.633c.263-.7.404-1.438.419-2.186c.043-.962.056-1.267.056-3.71s0-2.753-.056-3.71a6.6 6.6 0 0 0-.421-2.217m-1.218 9.532a5 5 0 0 1-.311 1.688a3 3 0 0 1-1.712 1.711a5 5 0 0 1-1.67.311c-.95.044-1.218.055-3.654.055c-2.438 0-2.687 0-3.655-.055a5 5 0 0 1-1.669-.311a3 3 0 0 1-1.719-1.711a5.1 5.1 0 0 1-.311-1.669c-.043-.95-.053-1.218-.053-3.654s0-2.686.053-3.655a5 5 0 0 1 .311-1.687c.305-.789.93-1.41 1.719-1.712a5 5 0 0 1 1.669-.311c.951-.043 1.218-.055 3.655-.055s2.687 0 3.654.055a5 5 0 0 1 1.67.311a3 3 0 0 1 1.712 1.712a5.1 5.1 0 0 1 .311 1.669c.043.951.054 1.218.054 3.655s0 2.698-.043 3.654z\"/>",{"left":412,"top":412,"width":413,"height":413,"rotate":412,"vFlip":184,"hFlip":184,"body":418},"\u003Cpath fill=\"currentColor\" d=\"M16.36 14c.08-.66.14-1.32.14-2s-.06-1.34-.14-2h3.38c.16.64.26 1.31.26 2s-.1 1.36-.26 2m-5.15 5.56c.6-1.11 1.06-2.31 1.38-3.56h2.95a8.03 8.03 0 0 1-4.33 3.56M14.34 14H9.66c-.1-.66-.16-1.32-.16-2s.06-1.35.16-2h4.68c.09.65.16 1.32.16 2s-.07 1.34-.16 2M12 19.96c-.83-1.2-1.5-2.53-1.91-3.96h3.82c-.41 1.43-1.08 2.76-1.91 3.96M8 8H5.08A7.92 7.92 0 0 1 9.4 4.44C8.8 5.55 8.35 6.75 8 8m-2.92 8H8c.35 1.25.8 2.45 1.4 3.56A8 8 0 0 1 5.08 16m-.82-2C4.1 13.36 4 12.69 4 12s.1-1.36.26-2h3.38c-.08.66-.14 1.32-.14 2s.06 1.34.14 2M12 4.03c.83 1.2 1.5 2.54 1.91 3.97h-3.82c.41-1.43 1.08-2.77 1.91-3.97M18.92 8h-2.95a15.7 15.7 0 0 0-1.38-3.56c1.84.63 3.37 1.9 4.33 3.56M12 2C6.47 2 2 6.5 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2\"/>",{"left":412,"top":412,"width":420,"height":420,"rotate":412,"vFlip":184,"hFlip":184,"body":421},32,"\u003Cpath fill=\"currentColor\" d=\"M20.844 2c-1.64 0-3.297.852-4.407 2.156v.032c-.789.98-1.644 2.527-1.375 4.312c-.128-.05-.136-.035-.28-.094c-.692-.281-1.548-.594-2.563-.594c-3.98 0-7 3.606-7 8.344c0 3.067 1.031 5.942 2.406 8.094c.688 1.078 1.469 1.965 2.281 2.625S11.57 28 12.531 28s1.68-.324 2.219-.563c.54-.238.957-.437 1.75-.437c.715 0 1.078.195 1.625.438c.547.242 1.293.562 2.281.562c1.07 0 1.98-.523 2.719-1.188s1.36-1.519 1.875-2.343c.516-.824.922-1.633 1.219-2.282c.148-.324.258-.593.343-.812s.13-.281.188-.531l.188-.813l-.75-.343a5.3 5.3 0 0 1-1.5-1.063c-.625-.637-1.157-1.508-1.157-2.844A4.08 4.08 0 0 1 24.563 13c.265-.309.542-.563.75-.719c.105-.078.187-.117.25-.156c.062-.04.05-.027.156-.094l.843-.531l-.562-.844c-1.633-2.511-4.246-2.844-5.281-2.844c-.48 0-.82.168-1.25.25c.242-.226.554-.367.75-.624c.004-.004-.004-.028 0-.032q.018-.016.031-.031h.031a6.16 6.16 0 0 0 1.563-4.438L21.78 2zm-1.188 2.313c-.172.66-.453 1.289-.906 1.78l-.063.063c-.382.516-.972.899-1.562 1.125c.164-.652.45-1.312.844-1.812c.008-.012.023-.02.031-.032c.438-.5 1.043-.875 1.656-1.125zm-7.437 5.5c.558 0 1.172.21 1.812.468s1.239.594 2.094.594c.852 0 1.496-.336 2.25-.594s1.559-.469 2.344-.469c.523 0 1.816.333 2.906 1.344c-.191.172-.36.297-.563.531a6.2 6.2 0 0 0-1.53 4.094c0 1.906.831 3.34 1.718 4.25c.55.563.89.696 1.313.938c-.055.125-.086.222-.157.375a19 19 0 0 1-1.093 2.062c-.454.727-1.004 1.434-1.532 1.907c-.527.472-1 .687-1.375.687c-.566 0-.898-.156-1.468-.406S17.581 25 16.5 25c-1.137 0-1.977.336-2.563.594c-.585.258-.89.406-1.406.406c-.246 0-.777-.2-1.375-.688c-.597-.488-1.254-1.23-1.844-2.156c-1.183-1.851-2.093-4.394-2.093-7c0-3.941 2.199-6.343 5-6.343\"/>",{"left":412,"top":412,"width":423,"height":423,"rotate":412,"vFlip":184,"hFlip":184,"body":424},256,"\u003Cpath fill=\"currentColor\" d=\"M228 128a100 100 0 1 1-22.86-63.64a12 12 0 0 1-18.51 15.28A76 76 0 1 0 203.05 140H128a12 12 0 0 1 0-24h88a12 12 0 0 1 12 12\"/>",{"left":412,"top":412,"width":423,"height":423,"rotate":412,"vFlip":184,"hFlip":184,"body":426},"\u003Cpath fill=\"currentColor\" d=\"M224 128a96 96 0 1 1-21.95-61.09a8 8 0 1 1-12.33 10.18A80 80 0 1 0 207.6 136H128a8 8 0 0 1 0-16h88a8 8 0 0 1 8 8\"/>",{"oVhJaef6Ht":8,"t96FybqVTi":8,"5lK7LS5al0":8,"5oSQ2a90xd":8,"upaZvqWvZ1":8,"2QISyIzlyM":8,"HGsO2Ckakl":8},"/general/differentiate-g-t-3t-2t-1"] AppleWebKit/537.36 KHTML,likeGecko Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://gcdn.fx2.io/math-master.org/"}}