First, set up the definite integral:
\int_{2}^{6} (x+1) \, dx
Calculate the antiderivative:
\int (x+1) \, dx = \frac{x^2}{2} + x
Evaluate the antiderivative at the upper and lower limits of the integral:
\left[ \frac{x^2}{2} + x \right]_{2}^{6}
Substitute the limits:
\left( \frac{6^2}{2} + 6 \right) - \left( \frac{2^2}{2} + 2 \right)
Simplify:
\left( 18 + 6 \right) - \left( 2 + 2 \right)
24 - 4 = 20
So, the area under the curve is:
20