1. Start with the function:
g(x)= \frac{3}{5x+4}
2. Express it as:
g(x)= 3(5x+4)^{-1}
3. Use the chain rule to find the derivative \( g'(x) \):
g'(x) = 3 \cdot (-1) \cdot (5x+4)^{-2} \cdot 5
4. Simplify the expression:
g'(x) = -\frac{15}{(5x+4)^2}
5. Answer is:
g'(x) = -\frac{15}{(5x+4)^2}