Question

For a monopolist, the unit cost of manufacturing a product is $3 and the demand equation is p= Va. What price will give the greatest profits?

299

likes
1494 views

Answer to a math question For a monopolist, the unit cost of manufacturing a product is $3 and the demand equation is p= Va. What price will give the greatest profits?

Expert avatar
Hester
4.8
117 Answers
Así es como se puede determinar el precio que generará la mayor ganancia para el monopolista: **1. Comprender los conceptos** * **Beneficio:** Ingresos totales menos costo total (Beneficio = TR - TC) * **Ecuación de demanda:** En este caso, la ecuación de demanda muestra una relación inversa entre el precio (p) y la cantidad demandada (implícita en 'a'). A medida que aumenta el precio, la cantidad demandada disminuye. * **Monopolista:** Un monopolista tiene el poder de fijar precios para maximizar sus ganancias. **2. Configurando las ecuaciones** * **Ingresos Totales (TR):** Precio (p) * Cantidad (q). Pero necesitamos expresar la cantidad en términos de precio usando la ecuación de la demanda. Como p = Va, podemos resolver para q: q = p/V * TR = p * (p/V) = p²/V * **Costo total (CT):** Costo unitario ($3) * Cantidad (q) * TC = 3q = 3(p/V) * **Ganancia:** * Beneficio = TR - TC = (p²/V) - (3p/V) **3. Encontrar el precio óptimo** Para maximizar las ganancias, un monopolista producirá donde el ingreso marginal (MR) sea igual al costo marginal (MC). Encontremos esos: * **Ingreso Marginal (MR):** La derivada de TR con respecto a p: MR = (2p/V) * **Costo Marginal (MC):** La derivada de TC con respecto a p: MC = (3 / V) **4. Ajuste MR = MC** * (2p/V) = (3/V) * 2p = 3 * p = 3/2 = $1.50 **5. Considerando la ecuación de la demanda** La ecuación de la demanda (p = Va) implica que 'V' es una constante que representa la pendiente de la curva de demanda. Necesitaremos el valor de 'V' para calcular un precio específico. Si V es muy pequeño, incluso el precio óptimo de 1,50 dólares puede no dar como resultado una ganancia positiva. **En resumen** * El precio de 1,50 dólares dará las mayores ganancias al monopolista, pero sólo si la curva de demanda permite una ganancia positiva dada la estructura de costos. Necesitará un valor para 'V' en la ecuación de demanda para obtener una respuesta más definitiva.

Frequently asked questions (FAQs)
Math Question: "What is the vertex form of the quadratic function y = -2x^2 + 4x + 3?"
+
What is the derivative of f(x) = 3x^2 + 2x - 7?
+
What is the measure of an angle formed by two rays if one ray is rotated by 45 degrees from the other?
+
New questions in Mathematics
Y=-x^2-8x-15 X=-7
58+861-87
We have spent 1/4 of the inheritance on taxes and 3/5 of the rest on buying a house. If the inheritance was a total of €150,000 How much money do we have left?
find all matrices that commute with the matrix A=[0 1]
What is the total tolerance for a dimension from 1.996" to 2.026*?
20% of 3500
find f(x) for f'(x)=3x+7
3. A rock is dropped from a height of 16 ft. It is determined that its height (in feet) above ground t seconds later (for 0≤t≤3) is given by s(t)=-2t2 + 16. Find the average velocity of the rock over [0.2,0.21] time interval.
The market for economics textbooks is represented by the following supply and demand equations: P = 5 + 2Qs P = 20 - Qd Where P is the price in £s and Qs and Qd are the quantities supplied and demanded in thousands. What is the equilibrium price?
A researcher is interested in voting preferences on change of the governing constitution in a certain country controlled by two main parties A and B. A questionnaire was developed and sent to a random sample of voters. The cross tabs are as follows Favour Neutral Oppose Membership: Party A 70 90 85 Party B 50 50 155 Test at α = 0.05 whether party membership and voting preference are associated and state the conditions required for chi-square test results to be valid.
3/9*4/8=
TEST 123123+123123
User One of the applications of the derivative of a function is its use in Physics, where a function that at every instant t associates the number s(t), this function s is called the clockwise function of the movement. By deriving the time function we obtain the velocity function at time t, denoted by v(t). A body has a time function that determines its position in meters at time t as S(t)=t.³√t+2.t . Present the speed of this body at time t = 8 s.
find missing measure for triangle area = 48 m square base = 10m heaighy = ? m
94 divided by 8.75
2x-5-x+2=5x-11
Given two lines 𝐿1: 𝑥 + 4𝑦 = −10 and 𝐿2: 2𝑥 − 𝑦 = 7. i. Find the intersection point of 𝐿1 and 𝐿2.
a) 6x − 5 > x + 20
the product of a 2-digit number and a 3-digit number is about 50000, what are these numbers
A plant found at the bottom of a lake doubles in size every 10 days. Yeah It is known that in 300 days it has covered the entire lake, indicate how many days it will take to cover the entire lake four similar plants.