Question

Given the set: W={(𝑥,𝑦,𝑧) ∈ 𝐼𝑅^3 / 2𝑥 − 𝑦 =0} a) Prove that the set is a vector subspace in IR3 b) Determine the generator<W>

177

likes
885 views

Answer to a math question Given the set: W={(𝑥,𝑦,𝑧) ∈ 𝐼𝑅^3 / 2𝑥 − 𝑦 =0} a) Prove that the set is a vector subspace in IR3 b) Determine the generator<W>

Expert avatar
Jett
4.7
97 Answers
a) Para demostrar que W es un subespacio vectorial en \mathbb{R}^3, debemos verificar que cumple con las siguientes propiedades:

1. El vector cero pertenece a W: Como 2(0) - 0 = 0, el vector cero pertenece a W.

2. Cerrado bajo la suma: Sean (x_1, y_1, z_1) y (x_2, y_2, z_2) dos elementos arbitrarios en W, entonces:
2x_1 - y_1 = 0
2x_2 - y_2 = 0
Ahora sumamos estos dos elementos:
2(x_1+x_2) - (y_1+y_2) = 2x_1 - y_1 + 2x_2 - y_2 = 0 + 0 = 0
Por lo tanto, la suma está también en W.

3. Cerrado bajo la multiplicación por un escalar: Sea (x, y, z) \in W y \alpha un escalar arbitrario, entonces:
2x - y = 0
Ahora multiplicamos por \alpha:
2(\alpha x) - (\alpha y) = \alpha(2x - y) = \alpha(0) = 0
Por lo tanto, la multiplicación está también en W.

Dado que W cumple con las tres propiedades, podemos concluir que W es un subespacio vectorial en \mathbb{R}^3.

b) Para determinar el generador del conjunto W, necesitamos encontrar el conjunto más pequeño que genera W. Dado que W está definido por la ecuación 2x - y = 0, podemos expresar y como función de x:
2x - y = 0 \Rightarrow y = 2x
Por lo tanto, cualquier vector en W se puede representar como (x, 2x, z) con x, z \in \mathbb{R}.

Finalmente, el generador de W está dado por:
\langle W \rangle = \{(x, 2x, z) \ | \ x, z \in \mathbb{R}\}

\boxed{\langle W \rangle = \{(x, 2x, z) \ | \ x, z \in \mathbb{R}\}}

Frequently asked questions (FAQs)
What is the measure of an angle using the Sine Law if the side opposite is 8 and the ratio of the sine of the angle to the sine of 70 degrees is 5/7?
+
Find the point(s) where the function f(x) = x^3 - 3x^2 - 9x + 1 reaches its extrema. (
+
What is the distance formula between two points (x₁, y₁) and (x₂, y₂) on a coordinate plane?
+
New questions in Mathematics
A circular park has a diameter of 150ft. A circular fence is to be placed on the edge of this park. Calculate the cost of fencing this park if the rate charged is $7 per foot. Use π = 3.14.
2x-y=5 x-y=4
X^2 = 25
By differentiating the function f(x)=(x³−6x)⁷ we will obtain
3x+5y=11 2x-3y=1
Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?
In a store, a person carries 14 kilos of rice and 28 kilos of flour. In what ratio are the kilos found? (Remember to simplify until you reach an irreducible fraction)
How many anagrams of the word SROMEC there that do not contain STROM, MOST, MOC or CEST as a subword? By subword is meant anything that is created by omitting some letters - for example, the word EMROSCT contains both MOC and MOST as subwords.
Solve the equation: sin(2x) = 0.35 Where 0° ≤ x ≤ 360°. Give your answers to 1 d.p.
A recurring sequence is one where elements repeat after completing one standard. If the sequence AB8C14D96AB8C1... is recurring its twentieth term is equal to: (A) B. (B) 8. (C) A. (D) 6. (E) D.
Convert 9/13 to a percent
Use a pattern to prove that (-2)-(-3)=1
Determine a general formula​ (or formulas) for the solution to the following equation.​ Then, determine the specific solutions​ (if any) on the interval [0,2π). cos30=0
How to convert 45 kg into grams
48 kg of 30% sulfuric acid in a mixture of 10% and 40% sulfuric acid arose. How many kilograms were each of the original solutions?
0<x<2π aralığındaki f(x)=x÷2 fonksiyonunun 0 < x < 4π için grafiğini çiziniz ve 0<x<2n için Fourier seri dönüşümünü gerçekleştiriniz.
To paint a 250 m wall, a number of workers were employed. If the wall were 30 m longer, 9 more workers would be needed. How many were employed at the beginning?
Determine the general solution of the equation y′+y=e−x .
3(x-4)=156
The car with an irresponsible driver starts to brake when it goes through a red light. When passing the traffic light, he does so at a speed of 115 kph in the right lane. Further ahead, 70 meters from the traffic light, a child is crossing the street and falls. If the effect of the car's brakes is equivalent to a deceleration of magnitude 5.7m/s². Is the child hit by the car or not? How far from the traffic light does the car stop?