Question

Given the set: W={(𝑥,𝑦,𝑧) ∈ 𝐼𝑅^3 / 2𝑥 − 𝑦 =0} a) Prove that the set is a vector subspace in IR3 b) Determine the generator<W>

177

likes
885 views

Answer to a math question Given the set: W={(𝑥,𝑦,𝑧) ∈ 𝐼𝑅^3 / 2𝑥 − 𝑦 =0} a) Prove that the set is a vector subspace in IR3 b) Determine the generator<W>

Expert avatar
Jett
4.7
97 Answers
a) Para demostrar que W es un subespacio vectorial en \mathbb{R}^3, debemos verificar que cumple con las siguientes propiedades:

1. El vector cero pertenece a W: Como 2(0) - 0 = 0, el vector cero pertenece a W.

2. Cerrado bajo la suma: Sean (x_1, y_1, z_1) y (x_2, y_2, z_2) dos elementos arbitrarios en W, entonces:
2x_1 - y_1 = 0
2x_2 - y_2 = 0
Ahora sumamos estos dos elementos:
2(x_1+x_2) - (y_1+y_2) = 2x_1 - y_1 + 2x_2 - y_2 = 0 + 0 = 0
Por lo tanto, la suma está también en W.

3. Cerrado bajo la multiplicación por un escalar: Sea (x, y, z) \in W y \alpha un escalar arbitrario, entonces:
2x - y = 0
Ahora multiplicamos por \alpha:
2(\alpha x) - (\alpha y) = \alpha(2x - y) = \alpha(0) = 0
Por lo tanto, la multiplicación está también en W.

Dado que W cumple con las tres propiedades, podemos concluir que W es un subespacio vectorial en \mathbb{R}^3.

b) Para determinar el generador del conjunto W, necesitamos encontrar el conjunto más pequeño que genera W. Dado que W está definido por la ecuación 2x - y = 0, podemos expresar y como función de x:
2x - y = 0 \Rightarrow y = 2x
Por lo tanto, cualquier vector en W se puede representar como (x, 2x, z) con x, z \in \mathbb{R}.

Finalmente, el generador de W está dado por:
\langle W \rangle = \{(x, 2x, z) \ | \ x, z \in \mathbb{R}\}

\boxed{\langle W \rangle = \{(x, 2x, z) \ | \ x, z \in \mathbb{R}\}}

Frequently asked questions (FAQs)
Math question: What is the sum of the mixed number 2 3/4, the factor of 12, and the real number -6.5?
+
What is the length of the perpendicular bisector of a triangle with side lengths 10, 12, and 15?
+
What is the standard deviation of the data set {12, 18, 21, 14, 25, 17, 20}?
+
New questions in Mathematics
Find 2 numbers that the sum of 1/3 of the first plus 1/5 of the second will be equal to 13 and that if you multiply the first by 5 and the second by 7 you get 247 as the sum of the two products with replacement solution
calculate the derivative by the limit definition: f(x) = 6x^3 + 2
-8+3/5
X^2 = 25
The graph of the equation x²= 4py is a parabola with focus F(_,_) and directrix y=_____ Therefore, the graph of x²=12y is a parabola with focus F(_,_) and a directrix y=_____
Elliot opened a savings account and deposited $5000.00 as principal. The account earns 4% interest, compounded annually. How much interest will he earn after 5 years? Round your answer to the nearest cent.
If f(x) = 3x 2, what is the value of x so that f(x) = 11?
Identify a pattern in the list of numbers.Then use this pattern to find the next number. 37,31,25,19,13
4. Show that if n is any integer, then n^2 3n 5 is an odd integer
is the x element (180,270), if tanx-3cotx=2, sinx ?
Convert 78 percent to a decimal
78 percent to a decimal
Find all real numbers x that satisfy the equation \sqrt{x^2-2}=\sqrt{3-x}
form a key for your lock containing the numbers 2 2 5 8 How many different keys can you form?
A property sold for $745,000 in a co-brokered transaction. The seller has agreed to pay a 7% commission to the listing firm. The listing firm has agreed to equally split the commission with the selling firm. If the buyer’s broker will receive 8% of the selling firm’s commission, how much commission will the buyer’s broker receive? $14,900 $3725 $$37250 $18625
Oi👋🏻 Toque em "Criar Nova Tarefa" para enviar seu problema de matemática. Um dos nossos especialistas começará a trabalhar nisso imediatamente!
Evaluate ab+dc if a=56 , b=−34 , c=0.4 , and d=12 . Write in simplest form.
6(k-7) -2=5
A small box measures 10 in. by 4 in. by 6 in. high. Find the volume of the box.
Suppose a car license plate consists of 2 letters and two digits of which the first cannot be zero. How many different plates can be engraved? consider only 26 letters and 10 digits draw an example of this.