To solve for side c, we can use the Law of Sines. The Law of Sines states that for any triangle, the ratio of the length of a side to the sine of its opposite angle is constant.
Step 1: Write down the formula for the Law of Sines:
 \frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} 
Step 2: Plug in the given information:
 \frac{11}{\sin(109^\circ)} = \frac{b}{\sin(32^\circ)} = \frac{c}{\sin\gamma} 
Step 3: Solve for side c:
 \frac{11}{\sin(109^\circ)} = \frac{c}{\sin\gamma} 
 \sin\gamma = \frac{c}{\frac{11}{\sin(109^\circ)}} 
 \sin\gamma = \frac{c \cdot \sin(109^\circ)}{11} 
Step 4: Plug in the known value of \beta (32 degrees) to find the value of \gamma :
 \alpha+\beta+\gamma=180^{\circ} 
 109^{\circ}+32^{\circ}+\gamma=180^{\circ} 
 \gamma=180^{\circ}-32^{\circ}-109^{\circ} 
 \gamma=39^{\circ} 
Step 5: Substitute the value of \sin\gamma and solve for side c:
 \sin\gamma = \frac{c \cdot \sin(109^\circ)}{11} 
 \sin(39^{\circ})=\frac{c \cdot\sin(109^\circ)}{11} 
Using a calculator, we find that \sin(39^{\circ})\approx0.6293 . So we can rewrite the equation as:
 0.6293=\frac{c \cdot\sin(109^\circ)}{11} 
Now, solve for c:
 c\cdot\sin(109^{\circ})=11\cdot0.6293 
 c=\frac{11\cdot0.6293}{\sin(109^{\circ})} 
 c\approx\frac{6.9225}{0.9455} 
 c\approx7.3214 
Answer: Side c ≈ 7.32