1. The perimeter \( P \) of a rectangle is given by the formula:
P = 2 \times (\text{length} + \text{width})
Given \( P = 94 \ \text{cm} \).
2. Let the width be \( w \). Therefore, the length \( l \) is:
l = 4w
3. Substitute for \( l \) in the perimeter formula:
94 = 2 \times (4w + w)
94 = 2 \times 5w
94 = 10w
4. Solve for \( w \):
w = \frac{94}{10} = 9.4 \ \text{cm}
5. Find the length \( l \):
l = 4 \times 9.4 = 37.6 \ \text{cm}
6. Round the dimensions to the nearest tenth:
- Width: \( 9.4 \ \text{cm} \) rounded to the nearest tenth remains \( 9.4 \ \text{cm} \).
- Length: \( 37.6 \ \text{cm} \) rounded to the nearest tenth remains \( 37.6 \ \text{cm} \).
7. Correct the earlier confusion to ensure width \( w \) and length \( l \) match initial condition:
- Set equation correctly initially for perimiter
94 = 2(w +4w) = 10 w\ ,
- Hence final update using equation above
w = \frac{94}{20} = 4.7 \ \text{cm}
l = 4 \times 4.7 = 18.8 \ \text{cm}
- Final dimensions:
- Width: 4.7\ \text{cm}
- Length: 18.8\ \text{cm}