1. Start with the revenue formula:
R = 800p - 7p^2
2. Plug $10,000 into the revenue formula:
10000 = 800p - 7p^2
3. Rearrange the equation to standard quadratic form:
7p^2 - 800p + 10000 = 0
4. Solve for \( p \) using the quadratic formula \( p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \):
Here, \( a = 7 \), \( b = -800 \), and \( c = 10000 \).
p = \frac{800 \pm \sqrt{(-800)^2 - 4 \cdot 7 \cdot 10000}}{2 \cdot 7}
p = \frac{800 \pm \sqrt{640000 - 280000}}{14}
p = \frac{800 \pm \sqrt{360000}}{14}
p = \frac{800 \pm 600}{14}
5. Calculate the two possible solutions for \( p \):
p_1 = \frac{800 + 600}{14} = \frac{1400}{14} = 100
p_2 = \frac{800 - 600}{14} = \frac{200}{14} \approx 14.29
6. Since the price must be greater than $50:
p = 100