Calculate the slope $m$ of the line using the formula
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{230 - 55}{4 - 1} = \frac{175}{3}.
Use the point-slope form of the equation:
y - y_1 = m(x - x_1).
Substitute $m = \frac{175}{3}$ and $(x_1, y_1) = (1, 55)$:
y - 55 = \frac{175}{3}(x - 1).
Expand and solve for $y$:
y - 55 = \frac{175}{3}x - \frac{175}{3}.
Add 55 to both sides:
y = \frac{175}{3}x - \frac{175}{3} + 55.
Convert 55 to a fraction with a denominator of 3:
55 = \frac{165}{3}.
Now combine the fractions:
y=\frac{175}{3}x+\frac{165}{3}-\frac{175}{3}=\frac{175}{3}x-\frac{10}{3}.
The linear equation in slope-intercept form is:
y=\frac{175}{3}x-\frac{10}{3}.
Answer: y=\frac{175}{3}x-\frac{10}{3}